Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Ito, T | en_US |
dc.contributor.author | Terwilliger, P | en_US |
dc.contributor.author | Weng, CW | en_US |
dc.date.accessioned | 2014-12-08T15:16:58Z | - |
dc.date.available | 2014-12-08T15:16:58Z | - |
dc.date.issued | 2006-04-01 | en_US |
dc.identifier.issn | 0021-8693 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.jalgebra.2005.07.038 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/12422 | - |
dc.description.abstract | We show that the quantum algebra U-q(sl(2)) has a presentation with generators x(+/- 1), y, Z and relations xx(-1) = x(-1)x = 1, [GRAPHICS] We call this the equitable presentation. We show that y (respectively z) is not invertible in U-q (sl(2)) by displaying an infinite-dimensional U-q (sl(2))-module that contains a nonzero null vector for y (respectively z). We consider finite-dimensional Uq (sl(2))-modules under the assumption that q is not a root of 1 and char(K) not equal 2, where K is the underlying field. We show that y and z are invertible on each finite-dimensional Uq(sl(2))-module. We display a linear operator Omega that acts on finite-dimensional U-q(sl(2))-modules, and satisfies Omega(-1) x Omega = y, Omega(-1) y Omega = z, Omega(-1) z Omega = x on these modules. We define Omega using the q-exponential function. (c) 2005 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | quantum group | en_US |
dc.subject | quantum algebra | en_US |
dc.subject | Leonard pair | en_US |
dc.subject | tridiagonal pair | en_US |
dc.title | The quantum algebra U-q(sl(2)) and its equitable presentation | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.jalgebra.2005.07.038 | en_US |
dc.identifier.journal | JOURNAL OF ALGEBRA | en_US |
dc.citation.volume | 298 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 284 | en_US |
dc.citation.epage | 301 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000236522300016 | - |
dc.citation.woscount | 33 | - |
Appears in Collections: | Articles |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.