Full metadata record
DC FieldValueLanguage
dc.contributor.authorIto, Ten_US
dc.contributor.authorTerwilliger, Pen_US
dc.contributor.authorWeng, CWen_US
dc.date.accessioned2014-12-08T15:16:58Z-
dc.date.available2014-12-08T15:16:58Z-
dc.date.issued2006-04-01en_US
dc.identifier.issn0021-8693en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jalgebra.2005.07.038en_US
dc.identifier.urihttp://hdl.handle.net/11536/12422-
dc.description.abstractWe show that the quantum algebra U-q(sl(2)) has a presentation with generators x(+/- 1), y, Z and relations xx(-1) = x(-1)x = 1, [GRAPHICS] We call this the equitable presentation. We show that y (respectively z) is not invertible in U-q (sl(2)) by displaying an infinite-dimensional U-q (sl(2))-module that contains a nonzero null vector for y (respectively z). We consider finite-dimensional Uq (sl(2))-modules under the assumption that q is not a root of 1 and char(K) not equal 2, where K is the underlying field. We show that y and z are invertible on each finite-dimensional Uq(sl(2))-module. We display a linear operator Omega that acts on finite-dimensional U-q(sl(2))-modules, and satisfies Omega(-1) x Omega = y, Omega(-1) y Omega = z, Omega(-1) z Omega = x on these modules. We define Omega using the q-exponential function. (c) 2005 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectquantum groupen_US
dc.subjectquantum algebraen_US
dc.subjectLeonard pairen_US
dc.subjecttridiagonal pairen_US
dc.titleThe quantum algebra U-q(sl(2)) and its equitable presentationen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jalgebra.2005.07.038en_US
dc.identifier.journalJOURNAL OF ALGEBRAen_US
dc.citation.volume298en_US
dc.citation.issue1en_US
dc.citation.spage284en_US
dc.citation.epage301en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000236522300016-
dc.citation.woscount33-
Appears in Collections:Articles


Files in This Item:

  1. 000236522300016.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.