Full metadata record
DC FieldValueLanguage
dc.contributor.authorTing, Chao-Chengen_US
dc.contributor.authorLiu, Chung-Hsuanen_US
dc.contributor.authorTai, Chun-Yenen_US
dc.contributor.authorHsu, Shih-Chiehen_US
dc.contributor.authorChao, Chih-Shuanen_US
dc.contributor.authorPan, Fu-Mingen_US
dc.date.accessioned2015-07-21T08:29:23Z-
dc.date.available2015-07-21T08:29:23Z-
dc.date.issued2015-04-15en_US
dc.identifier.issn0378-7753en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.jpowsour.2015.01.081en_US
dc.identifier.urihttp://hdl.handle.net/11536/124457-
dc.description.abstractWe prepared Pt nanoparticles of different particle sizes by plasma enhanced atomic layer deposition (PEALD) on the native oxide surface layer of Ti thin films, and investigated the Pt particle size effect on the electrocatalytic activity towards methanol oxidation reaction (MOR) in acidic media. The average Pt nanoparticles size ranges from 3 nm to 7 nm depending on the number of the PEALD reaction cycles. The electronic interaction between Pt nanoparticles and the TiO2 support is insignificant according to x-ray photoelectron spectroscopy analyses, suggesting that the influence of the Pt particle size on the electrocatalytic activity can be mainly described by the bifunctional mechanism. From cyclic voltammetry measurements, Pt particles of smaller size have a better CO tolerance in MOR. We proposed the reaction steps for the electrooxidation of CO adspecies on Pt nanoparticles on the basis of the bifunctional mechanism. The electrode with Pt nanoparticles of similar to 5 nm in size shows the best electrocatalytic performance in terms of CO tolerance and electrochemical stability. (C) 2015 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectPt nanoparticleen_US
dc.subjectTitaniaen_US
dc.subjectPlasma-enhanced atomic layer depositionen_US
dc.subjectMethanol oxidation reactionen_US
dc.subjectBifunctional mechanismen_US
dc.subjectElectronic effecten_US
dc.titleThe size effect of titania-supported Pt nanoparticles on the electrocatalytic activity towards methanol oxidation reaction primarily via the bifunctional mechanismen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.jpowsour.2015.01.081en_US
dc.identifier.journalJOURNAL OF POWER SOURCESen_US
dc.citation.volume280en_US
dc.citation.spage166en_US
dc.citation.epage172en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000350941400023en_US
dc.citation.woscount1en_US
Appears in Collections:Articles