Full metadata record
DC FieldValueLanguage
dc.contributor.authorFuchs, Michaelen_US
dc.contributor.authorLee, Chung-Kueien_US
dc.date.accessioned2019-04-03T06:37:13Z-
dc.date.available2019-04-03T06:37:13Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://dx.doi.org/10.1137/140977989en_US
dc.identifier.urihttp://hdl.handle.net/11536/124586-
dc.description.abstractThe Wiener index has been studied for simply generated random trees, nonplane unlabeled random trees, and a huge subclass of random grid trees containing random binary search trees, random median-of-(2k+1) search trees, random m-ary search trees, random quadtrees, random simplex trees, etc. An important class of random grid trees for which the Wiener index was not studied so far is random digital trees. In this work, we close this gap. More precisely, we derive asymptotic expansions of moments of the Wiener index and show that a central limit law for the Wiener index holds. These results are obtained for digital search trees and bucket versions as well as tries and PATRICIA tries. Our findings answer in the affirmative two questions posed by Neininger.en_US
dc.language.isoen_USen_US
dc.subjectWiener indexen_US
dc.subjectrandom treesen_US
dc.subjectdigital treesen_US
dc.subjectmomentsen_US
dc.subjectcentral limit theoremen_US
dc.titleTHE WIENER INDEX OF RANDOM DIGITAL TREESen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/140977989en_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume29en_US
dc.citation.issue1en_US
dc.citation.spage586en_US
dc.citation.epage614en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000352224600036en_US
dc.citation.woscount7en_US
Appears in Collections:Articles


Files in This Item:

  1. 02119b8b582552d5534edaf60d7fb4c0.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.