Full metadata record
DC FieldValueLanguage
dc.contributor.authorChern, Ruey-Linen_US
dc.contributor.authorHsieh, Han-Enen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Weichungen_US
dc.date.accessioned2019-04-03T06:37:13Z-
dc.date.available2019-04-03T06:37:13Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn0895-4798en_US
dc.identifier.urihttp://dx.doi.org/10.1137/140958748en_US
dc.identifier.urihttp://hdl.handle.net/11536/124587-
dc.description.abstractThis article focuses on solving the generalized eigenvalue problems (GEP) arising in the source-free Maxwell equation with magnetoelectric coupling effects that models three-dimensional complex media. The goal is to compute the smallest positive eigenvalues, and the main challenge is that the coefficient matrix in the discrete Maxwell equation is indefinite and degenerate. To overcome this difficulty, we derive a singular value decomposition (SVD) of the discrete single-curl operator and then explicitly express the basis of the invariant subspace corresponding to the nonzero eigenvalues of the GEP. Consequently, we reduce the GEP to a null space free standard eigenvalue problem (NFSEP) that contains only the nonzero (complex) eigenvalues of the GEP and can be solved by the shift-and-invert Arnoldi method without being disturbed by the null space. Furthermore, the basis of the eigendecomposition is chosen carefully so that we can apply fast Fourier transformation (FFT-) based matrix vector multiplication to solve the embedded linear systems efficiently by an iterative method. For chiral and pseudochiral complex media, which are of great interest in magnetoelectric applications, the NFSEP can be further transformed to a null space free GEP whose coefficient matrices are Hermitian and Hermitian positive definite (HHPD-NFGEP). This HHPD-NFGEP can be solved by using the invert Lanczos method without shifting. Furthermore, the embedded linear system can be solved efficiently by using the conjugate gradient method without preconditioning and the FFT- based matrix vector multiplications. Numerical results are presented to demonstrate the efficiency of the proposed methods.en_US
dc.language.isoen_USen_US
dc.subjectsingular value decompositionen_US
dc.subjectnull space free methoden_US
dc.subjectdiscrete single-curl operatoren_US
dc.subjectthe Maxwell equationsen_US
dc.subjectchiral mediumen_US
dc.subjectpseudochiral mediumen_US
dc.titleSINGULAR VALUE DECOMPOSITIONS FOR SINGLE-CURL OPERATORS IN THREE-DIMENSIONAL MAXWELL'S EQUATIONS FOR COMPLEX MEDIAen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/140958748en_US
dc.identifier.journalSIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONSen_US
dc.citation.volume36en_US
dc.citation.issue1en_US
dc.citation.spage203en_US
dc.citation.epage224en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000352222700010en_US
dc.citation.woscount3en_US
Appears in Collections:Articles


Files in This Item:

  1. 7a4ab92451b3b973589bd0fecb254ba3.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.