Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Yin-Liangen_US
dc.contributor.authorHuang, Tsung-Mingen_US
dc.contributor.authorLin, Wen-Weien_US
dc.contributor.authorWang, Wei-Chengen_US
dc.date.accessioned2019-04-03T06:41:18Z-
dc.date.available2019-04-03T06:41:18Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1064-8275en_US
dc.identifier.urihttp://dx.doi.org/10.1137/140954714en_US
dc.identifier.urihttp://hdl.handle.net/11536/124599-
dc.description.abstractWe present an efficient null space free Jacobi-Davidson method to compute the positive eigenvalues of time harmonic Maxwell's equations. We focus on a class of spatial discretizations that guarantee the existence of discrete vector potentials, such as Yee's scheme and the edge elements. During the Jacobi-Davidson iteration, the correction process is applied to the vector potential instead. The correction equation is solved approximately as in the standard Jacobi-Davidson approach. The computational cost of the transformation from the vector potential to the corrector is negligible. As a consequence, the expanding subspace automatically stays out of the null space and no extra projection step is needed. Numerical evidence confirms that the proposed scheme indeed outperforms the standard and projection-based Jacobi-Davidson methods by a significant margin.en_US
dc.language.isoen_USen_US
dc.subjecttime harmonic Maxwell's equationsen_US
dc.subjectYee's schemeen_US
dc.subjectedge elementsen_US
dc.subjectgeneralized eigenvalue problemen_US
dc.subjectdiscrete vector potentialen_US
dc.subjectdiscrete deRham complexen_US
dc.subjectPoincare Lemmaen_US
dc.subjectJacobi-Davidson methoden_US
dc.titleA NULL SPACE FREE JACOBI-DAVIDSON ITERATION FOR MAXWELL'S OPERATORen_US
dc.typeArticleen_US
dc.identifier.doi10.1137/140954714en_US
dc.identifier.journalSIAM JOURNAL ON SCIENTIFIC COMPUTINGen_US
dc.citation.volume37en_US
dc.citation.issue1en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000351210200001en_US
dc.citation.woscount6en_US
Appears in Collections:Articles


Files in This Item:

  1. d96b675934b82a5f56c65066cd003a1a.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.