完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Fuchs, Michael | en_US |
dc.date.accessioned | 2015-07-21T08:28:15Z | - |
dc.date.available | 2015-07-21T08:28:15Z | - |
dc.date.issued | 2015-07-01 | en_US |
dc.identifier.issn | 1042-9832 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1002/rsa.20524 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124773 | - |
dc.description.abstract | In a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L-2-distance of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the asymptotics of the L-3-distance. In this short note, we use the moment transfer approach to re-prove Neininger\'s result. As a consequence, we obtain the asymptotics of the L-p-distance for all 1p<Copyright (c) 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46,677-687, 2015 | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Quicksort | en_US |
dc.subject | key comparisons | en_US |
dc.subject | central limit theorem | en_US |
dc.subject | L-p-distance | en_US |
dc.subject | moment-transfer approach | en_US |
dc.title | A note on the quicksort asymptotics | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1002/rsa.20524 | en_US |
dc.identifier.journal | RANDOM STRUCTURES & ALGORITHMS | en_US |
dc.citation.volume | 46 | en_US |
dc.citation.spage | 677 | en_US |
dc.citation.epage | 687 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000354383200005 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |