完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFuchs, Michaelen_US
dc.date.accessioned2015-07-21T08:28:15Z-
dc.date.available2015-07-21T08:28:15Z-
dc.date.issued2015-07-01en_US
dc.identifier.issn1042-9832en_US
dc.identifier.urihttp://dx.doi.org/10.1002/rsa.20524en_US
dc.identifier.urihttp://hdl.handle.net/11536/124773-
dc.description.abstractIn a recent paper, Bindjeme and Fill obtained a surprisingly easy exact formula for the L-2-distance of the (normalized) number of comparisons of Quicksort under the uniform model to its limit. Shortly afterwards, Neininger proved a central limit theorem for the error. As a consequence, he obtained the asymptotics of the L-3-distance. In this short note, we use the moment transfer approach to re-prove Neininger\'s result. As a consequence, we obtain the asymptotics of the L-p-distance for all 1p<Copyright (c) 2013 Wiley Periodicals, Inc. Random Struct. Alg., 46,677-687, 2015en_US
dc.language.isoen_USen_US
dc.subjectQuicksorten_US
dc.subjectkey comparisonsen_US
dc.subjectcentral limit theoremen_US
dc.subjectL-p-distanceen_US
dc.subjectmoment-transfer approachen_US
dc.titleA note on the quicksort asymptoticsen_US
dc.typeArticleen_US
dc.identifier.doi10.1002/rsa.20524en_US
dc.identifier.journalRANDOM STRUCTURES & ALGORITHMSen_US
dc.citation.volume46en_US
dc.citation.spage677en_US
dc.citation.epage687en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000354383200005en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文