Full metadata record
DC FieldValueLanguage
dc.contributor.authorLiu, Chia-anen_US
dc.contributor.authorWeng, Chih-wenen_US
dc.date.accessioned2015-07-21T08:28:05Z-
dc.date.available2015-07-21T08:28:05Z-
dc.date.issued2015-06-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2015.01.040en_US
dc.identifier.urihttp://hdl.handle.net/11536/124795-
dc.description.abstractLet k, p, q be positive integers with k < p < q + 1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph K-p,K-q of bipartition orders p and q by deleting k edges is attained when the deleted edges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences. (C) 2015 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectBipartite graphen_US
dc.subjectAdjacency matrixen_US
dc.subjectSpectral radiusen_US
dc.subjectDegree sequenceen_US
dc.titleSpectral radius of bipartite graphsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.laa.2015.01.040en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume474en_US
dc.citation.spage30en_US
dc.citation.epage43en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000355040600003en_US
dc.citation.woscount0en_US
Appears in Collections:Articles