Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Liu, Chia-an | en_US |
dc.contributor.author | Weng, Chih-wen | en_US |
dc.date.accessioned | 2015-07-21T08:28:05Z | - |
dc.date.available | 2015-07-21T08:28:05Z | - |
dc.date.issued | 2015-06-01 | en_US |
dc.identifier.issn | 0024-3795 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1016/j.laa.2015.01.040 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/124795 | - |
dc.description.abstract | Let k, p, q be positive integers with k < p < q + 1. We prove that the maximum spectral radius of a simple bipartite graph obtained from the complete bipartite graph K-p,K-q of bipartition orders p and q by deleting k edges is attained when the deleted edges are all incident on a common vertex which is located in the partite set of order q. Our method is based on new sharp upper bounds on the spectral radius of bipartite graphs in terms of their degree sequences. (C) 2015 Elsevier Inc. All rights reserved. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Bipartite graph | en_US |
dc.subject | Adjacency matrix | en_US |
dc.subject | Spectral radius | en_US |
dc.subject | Degree sequence | en_US |
dc.title | Spectral radius of bipartite graphs | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1016/j.laa.2015.01.040 | en_US |
dc.identifier.journal | LINEAR ALGEBRA AND ITS APPLICATIONS | en_US |
dc.citation.volume | 474 | en_US |
dc.citation.spage | 30 | en_US |
dc.citation.epage | 43 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000355040600003 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |