完整後設資料紀錄
DC 欄位語言
dc.contributor.author黃智聖en_US
dc.contributor.authorHuang, Chih-Shenen_US
dc.contributor.author李永銘en_US
dc.contributor.authorLi,Yung-Mingen_US
dc.date.accessioned2015-11-26T00:55:44Z-
dc.date.available2015-11-26T00:55:44Z-
dc.date.issued2015en_US
dc.identifier.urihttp://140.113.39.130/cdrfb3/record/nctu/#GT070253434en_US
dc.identifier.urihttp://hdl.handle.net/11536/125992-
dc.description.abstract隨著近來群眾外包概念的興起,過去碰到問題只能找專家解決的模式已經逐漸被取代,更多的是透過群眾外包的方式去解決問題,效率普遍來說不錯且收費也相對便宜,而近來智慧型裝置的崛起也讓這項服務更為方便,使用者可以透過行動裝置在任何時間、地點都可以隨時的發問。不過目前還是以被動服務為主,使用者等待的時間較長且結果也不一定滿意之下,效率相對降低不少。現況除了不具有即時性之外,社交功能的需求也無法滿足。本研究將行動智慧與社群機制結合,並且考量知識(Knowledge)、情境(Context)與社會影響(Social influence),讓使用者有需求的時候,能透過行動裝置即時找到附近具有相對較有能力且具有一定關系的一位或多位群眾來一起參與活動或是解決問題,除了知識的分享之外,也具有一定的社交功能。讓So-Lo-Mo有更進一步的應用與發展。zh_TW
dc.description.abstractRecently, with the rise of crowdsourcing, the concept that problems can only be solved by known experts has gradually been replaced. More and more people try to solve the problems via crowdsourcing, with not only efficiency but also inexpensiveness, not to mention that the increasing usage of smart devices also allow the service to become more convenient. Through mobile device users’ problem can be solved at any time and any place. However, passive waiting for suitable candidates is Achilles' heel. Besides, the results are not always satisfied with the users. Not personalized recommendation leads lower efficiency. Existing service neither has the ability to handle the real-time situation nor satisfy needs’ of social function. In this research, we combine mobile intelligence and social community, and take crowd wisdom, context, and social impacts into considered. Allowing users to find nearby people whom have certain relationship to participate in or handle with difficult problems in real-time via a mobile device. In addition of knowledge sharing, also equip with social functions. This research lets So-Lo-Mo applications have further development and application.en_US
dc.language.isoen_USen_US
dc.subject專家尋找zh_TW
dc.subject社交網路zh_TW
dc.subject社群推薦zh_TW
dc.subject群眾外包zh_TW
dc.subjectSo-Lo-Mozh_TW
dc.subjectSocial referralen_US
dc.subjectCrowdsourcingen_US
dc.subjectExpert findingen_US
dc.subjectSocial networksen_US
dc.subjectSo-Lo-Moen_US
dc.title在地群眾專家與團伴推薦機制zh_TW
dc.titleA Nearby Crowd Based Expert and Companion Discovering Mechanismen_US
dc.typeThesisen_US
dc.contributor.department資訊管理研究所zh_TW
顯示於類別:畢業論文