标题: 多站批次机台之生产线派工决策
Dispatching Decisions for Multiple Batch-Type Workstations in a Production System
作者: 林则维
Lin, Tse-Wei
巫木诚
Wu, Muh-Cherng
工业工程与管理系所
关键字: 晶圆代工;批次机台派工;系统模拟;类神经网路;基因演算法;Job dispatching policy;Batch processing;Semiconductor manufacturing;Simulation;Neural Network;Genetic Algorithm
公开日期: 2015
摘要: 本研究以现实环境中一座晶圆代工厂做为实验案例,探讨此晶圆厂制程之派工决策。有别于一般传统制造业,晶圆制造厂内常有序列工作站与批次工作站两种加工机台,而一次加工多项物件的批次工作站会因为加工批量大小的设定与造成下游机台产生需求不固定(lumpy demand)的情况,导致批次工作站的派工决策将严重影响了晶圆厂的生产绩效。梁日徽 (2014)针对晶圆厂内的批次工作站提出以最大等候时间(T_max^i)做为新的派工决策,批次工作站i在满足下列其中一个情况开始进行加工:第一,暂存区(buffer)中含有一个工件之等候时间达到T_max^i;第二,暂存区之工件数量达到满批量。该研究以模拟法与基因演算法进行最佳解求解,然而在求解过程中需要耗费大量时间进行运算,无法有效率的进行求解。为解决梁日徽 (2014)计算时间冗长之缺点,本研究以类神经网路取代模拟法做为晶圆厂的快速绩效预测工具,并同样以基因演算法做为近似最佳解搜寻工具。实验结果表明,使用本研究之NN-GA可以快速求解,同时,求出之近似最佳解与梁日徽 (2014)研究中所求出之近似最佳解非常接近。
This research investigates the job dispatching decision in a semiconductor fab, which includes a number of batch workstations. A batch workstation can process more than one job simultaneously; the dispatching decision (when to start a batch machine) has a substantial effect on batch size and affects manufacturing performance. Liang (2014) proposes to use the maximum waiting time (T_max^i) criterion to dispatch batch workstations, that is, batch workstation i starts processing when one of its WIP (work-in-process) waits up to T_max^i or a full batch of WIP jobs are available. He used discrete-event simulation and genetic algorithm to find a near optimal solution; yet his approach requires extensive computational efforts. To reduce computational efforts, this research uses sampled simulation results to establish a neural network (NN) for quickly evaluating the performance of dispatching decisions, and develops a genetic algorithm (GA) to find a near-optimum solution. Experiment results indicate that the NN-GA approach greatly reduces the computational efforts while the obtained solution is very close to that of Liang (2014).
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070253308
http://hdl.handle.net/11536/126070
显示于类别:Thesis