標題: | 完備流形第一固有值之上界估計 Upper bounds for the first eigenvalue of the Laplace operator on complete Riemannian manifolds |
作者: | 賴建綸 Lai, Chien-Lun 許義容 Hsu, Yi-Jung 應用數學系所 |
關鍵字: | 第一固有值;完備流形;上界估計;complete Riemannian manifolds;first eigenvalue;upper bound estimates |
公開日期: | 2015 |
摘要: | 假設M 是一個體積為無窮之完備黎曼流形, 是在 M 上的一個緊致集. 分別在體積成長跟Ricci 曲率的下界的條件下, 去估計(M \ Omega ) 之第一固有值的上界. 研究方法主要是根據二次微分方程解的漸近行為跟max-min principle 及Bishop 比較定理. Let M be a complete Riemannian manifold with infnite volume and be a compact subdomain in M. In this thesis we obtain two upper bound estimates for the first eigenvalue of the Laplacian on the punctured manifold M \ Omega subject to volume growth and lower bound of Ricci curvature, respectively. The proof hinges on asymptotic behavior of solutions of second order differential equations, the max-min principle and Bishop volume comparison theorem. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT079722807 http://hdl.handle.net/11536/126169 |
Appears in Collections: | Thesis |