標題: 完備流形第一固有值之上界估計
Upper bounds for the first eigenvalue of the Laplace operator on complete Riemannian manifolds
作者: 賴建綸
Lai, Chien-Lun
許義容
Hsu, Yi-Jung
應用數學系所
關鍵字: 第一固有值;完備流形;上界估計;complete Riemannian manifolds;first eigenvalue;upper bound estimates
公開日期: 2015
摘要: 假設M 是一個體積為無窮之完備黎曼流形, ­是在 M 上的一個緊致集. 分別在體積成長跟Ricci 曲率的下界的條件下, 去估計(M \ Omega ­) 之第一固有值的上界. 研究方法主要是根據二次微分方程解的漸近行為跟max-min principle 及Bishop 比較定理.
Let M be a complete Riemannian manifold with infnite volume and ­ be a compact subdomain in M. In this thesis we obtain two upper bound estimates for the first eigenvalue of the Laplacian on the punctured manifold M \ Omega ­ subject to volume growth and lower bound of Ricci curvature, respectively. The proof hinges on asymptotic behavior of solutions of second order differential equations, the max-min principle and Bishop volume comparison theorem.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT079722807
http://hdl.handle.net/11536/126169
顯示於類別:畢業論文