标题: 以强形式架构求解几何非线性边界值问题
Strong-Form Framework for Solving Boundary Value Problems with Geometric Nonlinearity
作者: 苏婉婷
Su,Wan-Ting
杨子仪
土木工程系所
关键字: 强形式配置法;径向基函数;几何非线性;增量叠代演算法;牛顿法;strong form collocation method;radial basis function;geometric nonlinearity;incremental-iterative algorithm;Newton-Raphson method
公开日期: 2015
摘要: 强形式配置法系一无网格法,此方法引入函数近似并以节点做离散,故不需要建立网格,因此可避免求解大变形问题时,因结构变形后产生不连续情形的数值模拟误差。
本研究首先提出强形式增量叠代流程求解几何非线性问题,将径向基函数结合强形式配置法求解非线性边界值问题。在非线性弹性力学分析中,使用总体拉格朗日表述法描述物体之平衡状态,引入径向基函数近似,以强形式表述法推导增量式之边界值问题,包含控制方程与边界条件,接着使用牛顿叠代法建立增量叠代演算。本研究最后以受拉力轴力杆问题与受弯矩悬臂梁问题验证所提出之强形式增量叠代流程求解几何非线性问题。
The strong form collocation method is a truly meshfree method, which introduces function approximation at nodes and uses direct collocation without using background mesh. As a consequence, it avoids mesh related issues when structures are subjected to large deformation and encounter discontinuity.
In this study, we propose a strong-form formulation for performing the incremental-iterative process to solve geometric nonlinear problems, in which the radial basis collocation method is adopted for solving nonlinear boundary value problems. In the analysis of nonlinear elasticity, we first describe the equilibrium of a body by using the total Lagrangian formulation. Then, we introduce the radial basis function approximation together with the strong form formulation to derive the incremental equation of the nonlinear boundary value problem, which includes the governing equation and boundary conditions. Finally, we establish an incremental-iterative algorithm by using the Newton-Raphson iteration scheme. To demonstrate the proposed framework for solving geometric nonlinear problems, three benchmark problems including tensile bar problems and a cantilever beam under pure bending are solved.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070151212
http://hdl.handle.net/11536/126502
显示于类别:Thesis