標題: | 利用SDRE策略探討非線性系統之全域穩定度 Global Stability of a Class of Nonlinear Systems via State-Dependent Riccati Equation Strategy |
作者: | 彭芳儀 Peng, Fang-I 梁耀文 Liang, Yew-Wen 電控工程研究所 |
關鍵字: | 狀態相關Riccati方程;全域漸進穩定;二階非線性系統;state-dependent Riccati equation (SDRE);globally asymptotic stability (GAS);second-order nonlinear systems |
公開日期: | 2015 |
摘要: | 本論文主要探討二階非線性系統以及雙二階非線性系統在SDRE控制方法下可達全域漸進穩定度的議題。首先,在使用多重李亞普諾夫函數(multiple Lyapunov functions ,MLFs)技術下,本論文所考慮的二階系統可藉由選取合適的狀態相關係數(state-dependent coefficient,SDC)矩陣使系統達到全域漸進穩定。接著,經由適當的選取SDC矩陣,本論文探討的雙二階系統所對應SDRE的解析解可以很明確的表示出來。且在使用特定的李雅普諾夫函數以及拉塞爾不變集理論(LaSalle's invariant set theorem)下,可以求得該雙二階系統全域穩定的條件。最後,透過例子說明本論文的分析結果。 This thesis addresses the globally asymptotic stability issues for a class of second-order nonlinear systems and a class of two second-order nonlinear systems using the state-dependent Riccati equation (SDRE) approach. First, with the help of multiple Lyapunov functions (MLFs) technique, it will be shown that the considered class of second-order system is always globally asymptotically stable (GAS) by suitable choosing state-dependent coefficient (SDC) matrices. Next, by appropriate selecting the SDC matrices, we explicitly write down the analytic solution of the associated SDRE for the considered two second-order nonlinear systems and then explore the global stability condition using a specific Lyapunov function and LaSalle's invariant set theorem. Finally, the analytic results are illustrated by several examples. |
URI: | http://140.113.39.130/cdrfb3/record/nctu/#GT070260040 http://hdl.handle.net/11536/126563 |
Appears in Collections: | Thesis |