Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, HJen_US
dc.contributor.authorTzeng, GHen_US
dc.contributor.authorOng, CSen_US
dc.date.accessioned2014-12-08T15:17:29Z-
dc.date.available2014-12-08T15:17:29Z-
dc.date.issued2006-02-01en_US
dc.identifier.issn0096-3003en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.amc.2005.04.074en_US
dc.identifier.urihttp://hdl.handle.net/11536/12674-
dc.description.abstractIn this paper, the conventional mean-variance method is revised to determine the optimal portfolio selection under the uncertain situation. The possibilistic area of the return rate is first derived using the possibisitic regression model. Then, the Mellin transformation is employed to obtain the mean and the risk by considering the uncertainty. Next, the revised mean-variance model is proposed to deal with the problem of uncertain portfolio selection. In addition, a numerical example is used to demonstrate the proposed method. On the basis of the numerical results, we can conclude that the proposed method can provide the more flexible and accurate results than the conventional method under the uncertain portfolio selection situation. (c) 2005 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectmean-variance methoden_US
dc.subjectportfolio selectionen_US
dc.subjectpossibilistic regressionen_US
dc.subjectMellin transformationen_US
dc.titleA novel algorithm for uncertain portfolio selectionen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.amc.2005.04.074en_US
dc.identifier.journalAPPLIED MATHEMATICS AND COMPUTATIONen_US
dc.citation.volume173en_US
dc.citation.issue1en_US
dc.citation.spage350en_US
dc.citation.epage359en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000235762800021-
dc.citation.woscount4-
Appears in Collections:Articles


Files in This Item:

  1. 000235762800021.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.