完整後設資料紀錄
DC 欄位語言
dc.contributor.authorHuang, JJen_US
dc.contributor.authorTzeng, GHen_US
dc.contributor.authorOng, CSen_US
dc.date.accessioned2014-12-08T15:17:30Z-
dc.date.available2014-12-08T15:17:30Z-
dc.date.issued2006-02-01en_US
dc.identifier.issn0218-4885en_US
dc.identifier.urihttp://dx.doi.org/10.1142/S0218488506003856en_US
dc.identifier.urihttp://hdl.handle.net/11536/12681-
dc.description.abstractAlthough fuzzy regression is widely employed to solve many problems in practice, what seems to be lacking is the problem of multicollinearity. In this paper, the fuzzy centers principal component analysis is proposed to first derive the fuzzy principal component scores. Then the fuzzy principal component regression (FPCR) is formed to overcome the problem of multicollinearity in the fuzzy regression model. In addition, a numerical example is used to demonstrate the proposed method and compare with other methods. On the basis of the results, we can conclude that the proposed method can provide a correct fuzzy regression model and avoid the problem of multicollinearity.en_US
dc.language.isoen_USen_US
dc.subjectfuzzy regressionen_US
dc.subjectfuzzy centers principal component analysisen_US
dc.subjectfuzzy principal component scoresen_US
dc.subjectmulticollinearityen_US
dc.subjectfuzzy principal component regression (FPCR)en_US
dc.titleFuzzy principal component regression (FPCR) for fuzzy input and output dataen_US
dc.typeArticleen_US
dc.identifier.doi10.1142/S0218488506003856en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMSen_US
dc.citation.volume14en_US
dc.citation.issue1en_US
dc.citation.spage87en_US
dc.citation.epage100en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000236240800008-
dc.citation.woscount2-
顯示於類別:期刊論文