Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Pei Yuanen_US
dc.contributor.authorGau, Hwa-Longen_US
dc.contributor.authorTsai, Ming Chengen_US
dc.date.accessioned2014-12-08T15:17:30Z-
dc.date.available2014-12-08T15:17:30Z-
dc.date.issued2009-03-01en_US
dc.identifier.issn0024-3795en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.laa.2007.11.017en_US
dc.identifier.urihttp://hdl.handle.net/11536/12690-
dc.description.abstractWe show that if A is a C(0) contraction with minimal function phi such that w(A) = w(S(phi)), where w(.) denotes the numerical radius of an operator and S(phi) is the compression of the shift on H(2 circle minus phi)H(2), and B commutes with A, then w(AB) <= w(A)parallel to B parallel to. This is in contrast to the known fact that if A = S(phi) (even on dimensional space) and B commutes with A, then w(AB) <= w parallel to A parallel to w(B) is not necessarily true. As a a finite consequence, we have w(AB) <= w(A)parallel to B parallel to for any quadratic operatorA and any B commuting with A. (c) 2007 Elsevier Inc. All rights reserved.en_US
dc.language.isoen_USen_US
dc.titleNumerical radius inequality for C(0) contractionsen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.doi10.1016/j.laa.2007.11.017en_US
dc.identifier.journalLINEAR ALGEBRA AND ITS APPLICATIONSen_US
dc.citation.volume430en_US
dc.citation.issue5-6en_US
dc.citation.spage1509en_US
dc.citation.epage1516en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
Appears in Collections:Conferences Paper