標題: 具有高可靠度的混合式燃料火箭地面測試資料量測系統研製
Development of a Highly Reliable Data Acquisition System for Hybrid Rocket Ground Static-Burn Test Facility
作者: 黃珮芳
Huang,Pei-Fang
吳宗信
Wu,Jong-Shinn
工學院精密與自動化工程學程
關鍵字: 混合式燃料火箭;地面測試;推進器;推力;Hybrid Rocket;Ground Static-Burn Test;Propulsion;Thrust
公開日期: 2015
摘要: 火箭在產生推力的過程中,其將產生一定的高溫與高壓,若一不慎則會造成內部因高溫燒穿結構體或者是高壓導致爆裂等危害,所以除了早前的需要嚴謹的設計、分析與模擬外,完成成品後續的測試與驗證更顯其重要性。 推進器之地面靜態測試設備為ARRC團隊合力架設完成。包含推進器固定架、大型氧化劑儲存槽、連接管路、多種感應器與致動器以及最後的資料監控系統與其監控軟體。本地面靜態測試設備之測試範圍約從數百公斤至數萬公斤級之推進器。一次實驗之氧化劑最大存量約為400公升 (可短時間重複充填)。而感測器/致動器與監控系統包含測量推力所需的荷重元、偵測管路壓力的壓力感測器、結構體溫度變化的熱電偶以及氧化劑流動速率的流量計…等;此監控系統也必須能夠模擬並產生火箭推進器致動器控制的相關指令與訊號,包含觸發推進器的點火訊號、控制氧化劑閥門的步進馬達、氣動閥、電磁閥…等,當然還有其指令下達後的回授命令,例如閥門開啟角度、命令下達時間與同步訊號…等。 本論文主要目的是使用在現有的推力測試硬體架構下,去修改並新增監控設備的架構,設計一套通用型的地面監控系統,並且具有高可靠度以及快速修改介面的特性,滿足未來ARRC 團隊在不同規格與介面的推進器進行地面靜態測試之需求,另外,其系統的穩定性與緊急應變設計也是監控系統的設計重點。 第一章主要進行實驗背景與實驗的目的說明,包含一開始火箭的分類與其優缺點、設計的困難處與挑戰,並說明地面靜試的重要性,為何需要地面靜試以及其監控的重點,最後輔以地面靜試監控的重要參數說明。第二章主要是實驗設備的說明,主要說明地面靜試場地的配置、監控系統的架設以及使用到的感測器原理簡介與功能說明。而第三章則是針對監控系統可能使用到的設計模式以及資料傳輸的方式進行蒐集與整理,提供在進行系統規劃時的可能參考。第四章是結果與討論,實際將系統應用於3500公斤推力等級的地面測試。最後,第五章則是未來的展望與一些建議改善的項目。
Reaction in combustion chamber of rocket propulsion generates thrust and, simultaneously, induces high temperature and pressure which can cause burnthrough of structure or even destruction. In addition to rigorous design, analysis and simulation, comprehensive test and validation deserve more attention in prototype phase. Established by ARRC and pledged tremendous team effort, propulsion static test facility is a ground infrastructure consisting of propulsion system fixture, large oxidizer tank, piping between them, necessary sensors and actuator suite, monitoring system and software. The facility allows the propulsion test of thrust level ranged from hundreds to tens of thousands kgf. Maximum oxidizer allowed for one test campaign is around 400 liters and is capable of replenishment within short period of time.Sensor & actuator suite along with monitoring system includes load cell for thrust force measurement, pressure transducer for pipeline pressure recording, thermal couple for structure temperature variation and flow meter for oxidizer flow rate. Even more, the monitoring system shall be able to simulate the signals or generate commands for the actuator of rocket propulsion system. Those commands are ignition for propulsion system, step motor control for oxidizer latching valves, pneumatic valves and solenoid valves. In the meantime, feedback signals after the arrival of commands including valve angle, command time tag and synchronization among sensors will return to monitoring system for data post-processing purpose. To fulfill ARRC’s imminent and future ground static test needs for propulsion systems of various thrust levels and interfaces, the thesis proposes a new general purpose monitor architecture that is able to fit into existing infrastructure. The architecture is highly reliable and allows quick interface revision under most circumstances. Also, emergency response measure and system reliability are highlights of the proposed architecture. Chapter one illustrates the background information of the static test, and offers the purpose of the test including the pros and cons of various rockets, challenges and difficulties of design, necessity and importance of ground static test, list of key parameters to be monitored and descriptions. The second chapter covers ground test facility including floor plan, monitoring system setup, theory and function introduction of all sensors considered in the monitoring system. Options of software architecture and data transmission methods that can be applied to the building of monitoring system are narrated in chapter three. Finally, results and future works of the thesis are summarized in the chapter four and five.
URI: http://140.113.39.130/cdrfb3/record/nctu/#GT070261110
http://hdl.handle.net/11536/127133
Appears in Collections:Thesis