Full metadata record
DC FieldValueLanguage
dc.contributor.authorLo, Yuan-Hsunen_US
dc.contributor.authorFu, Hung-Linen_US
dc.contributor.authorLin, Yi-Heanen_US
dc.date.accessioned2015-12-02T02:59:05Z-
dc.date.available2015-12-02T02:59:05Z-
dc.date.issued2015-08-01en_US
dc.identifier.issn0925-1022en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s10623-014-9961-5en_US
dc.identifier.urihttp://hdl.handle.net/11536/127846-
dc.description.abstractA conflict-avoiding code (CAC) of length and weight is a collection of -subsets of such that for any and , where . Let denote the class of all CACs of length and weight . A CAC is said to be equi-difference if any codeword has the form . A CAC with maximum size is called optimal. In this paper we propose a graphical characterization of an equi-difference CAC, and then provide an infinite number of optimal equi-difference CACs for weight four.en_US
dc.language.isoen_USen_US
dc.subjectConflict-avoiding codeen_US
dc.subjectEqui-difference conflict-avoiding codeen_US
dc.subjectWeighted matchingen_US
dc.titleWeighted maximum matchings and optimal equi-difference conflict-avoiding codesen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s10623-014-9961-5en_US
dc.identifier.journalDESIGNS CODES AND CRYPTOGRAPHYen_US
dc.citation.volume76en_US
dc.citation.spage361en_US
dc.citation.epage372en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000356360000013en_US
dc.citation.woscount0en_US
Appears in Collections:Articles