完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Lo, Yuan-Hsun | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.contributor.author | Lin, Yi-Hean | en_US |
dc.date.accessioned | 2015-12-02T02:59:05Z | - |
dc.date.available | 2015-12-02T02:59:05Z | - |
dc.date.issued | 2015-08-01 | en_US |
dc.identifier.issn | 0925-1022 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10623-014-9961-5 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/127846 | - |
dc.description.abstract | A conflict-avoiding code (CAC) of length and weight is a collection of -subsets of such that for any and , where . Let denote the class of all CACs of length and weight . A CAC is said to be equi-difference if any codeword has the form . A CAC with maximum size is called optimal. In this paper we propose a graphical characterization of an equi-difference CAC, and then provide an infinite number of optimal equi-difference CACs for weight four. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Conflict-avoiding code | en_US |
dc.subject | Equi-difference conflict-avoiding code | en_US |
dc.subject | Weighted matching | en_US |
dc.title | Weighted maximum matchings and optimal equi-difference conflict-avoiding codes | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10623-014-9961-5 | en_US |
dc.identifier.journal | DESIGNS CODES AND CRYPTOGRAPHY | en_US |
dc.citation.volume | 76 | en_US |
dc.citation.spage | 361 | en_US |
dc.citation.epage | 372 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000356360000013 | en_US |
dc.citation.woscount | 0 | en_US |
顯示於類別: | 期刊論文 |