Full metadata record
DC FieldValueLanguage
dc.contributor.authorFu, Yu-Hsiangen_US
dc.contributor.authorHuang, Chung-Yuanen_US
dc.contributor.authorSun, Chuen-Tsaien_US
dc.date.accessioned2019-04-03T06:38:40Z-
dc.date.available2019-04-03T06:38:40Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn1024-123Xen_US
dc.identifier.urihttp://dx.doi.org/10.1155/2015/675713en_US
dc.identifier.urihttp://hdl.handle.net/11536/127942-
dc.description.abstractIdentifying the most influential individuals spreading information or infectious diseases can assist or hinder information dissemination, product exposure, and contagious disease detection. Hub nodes, high betweenness nodes, high closeness nodes, and high k-shell nodes have been identified as good initial spreaders, but efforts to use node diversity within network structures to measure spreading ability are few. Here we describe a two-step framework that combines global diversity and local features to identify the most influential network nodes. Results from susceptible-infected-recovered epidemic simulations indicate that our proposed method performs well and stably in single initial spreader scenarios associated with various complex network datasets.en_US
dc.language.isoen_USen_US
dc.titleIdentifying Super-Spreader Nodes in Complex Networksen_US
dc.typeArticleen_US
dc.identifier.doi10.1155/2015/675713en_US
dc.identifier.journalMATHEMATICAL PROBLEMS IN ENGINEERINGen_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000357512200001en_US
dc.citation.woscount2en_US
Appears in Collections:Articles


Files in This Item:

  1. ed60abb340fe223a56ce7e144c879d92.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.