完整後設資料紀錄
DC 欄位語言
dc.contributor.authorTeng, Huei-Wenen_US
dc.contributor.authorKang, Ming-Hsuanen_US
dc.contributor.authorFuh, Cheng-Deren_US
dc.date.accessioned2015-12-02T02:59:31Z-
dc.date.available2015-12-02T02:59:31Z-
dc.date.issued2015-09-01en_US
dc.identifier.issn0001-8678en_US
dc.identifier.urihttp://hdl.handle.net/11536/128293-
dc.description.abstractThe calculation of multivariate normal probabilities is of great importance in many statistical and economic applications. In this paper we propose a spherical Monte Carlo method with both theoretical analysis and numerical simulation. We start by writing the multivariate normal probability via an inner radial integral and an outer spherical integral using the spherical transformation. For the outer spherical integral, we apply an integration rule by randomly rotating a predetermined set of well-located points. To find the desired set, we derive an upper bound for the variance of the Monte Carlo estimator and propose a set which is related to the kissing number problem in sphere packings. For the inner radial integral, we employ the idea of antithetic variates and identify certain conditions so that variance reduction is guaranteed. Extensive Monte Carlo simulations on some probabilities confirm these claims.en_US
dc.language.isoen_USen_US
dc.subjectSphericalen_US
dc.subjectsimulationen_US
dc.subjectvariance reductionen_US
dc.subjectsphere packingsen_US
dc.subjectkissing numberen_US
dc.subjectlatticeen_US
dc.titleON SPHERICAL MONTE CARLO SIMULATIONS FOR MULTIVARIATE NORMAL PROBABILITIESen_US
dc.typeArticleen_US
dc.identifier.journalADVANCES IN APPLIED PROBABILITYen_US
dc.citation.volume47en_US
dc.citation.spage817en_US
dc.citation.epage836en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.identifier.wosnumberWOS:000362239900010en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文