Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Yu-Hsuen_US
dc.contributor.authorWu, Yu-Chuanen_US
dc.contributor.authorHsu, Ya-Tingen_US
dc.contributor.authorHuang, Shih-Haoen_US
dc.contributor.authorHuang, Yi-Chinen_US
dc.contributor.authorChiu, Hsin-Tienen_US
dc.date.accessioned2019-04-03T06:35:44Z-
dc.date.available2019-04-03T06:35:44Z-
dc.date.issued2015-01-01en_US
dc.identifier.issn2046-2069en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c5ra11492fen_US
dc.identifier.urihttp://hdl.handle.net/11536/128345-
dc.description.abstractThis study used a galvanic displacement reaction for aluminum-gold oxidation-reduction and added surfactants to act as capping agents to control the morphology and size of gold growth. Three surfactants, namely cetyltrimethylammonium bromide, polyvinylpyrrolidone, and poly(ethylene glycol)(12) tridecyl ether, were added to HAuCl4 (aq.) to create novel gold nanospirals (AuNSs) 200-500 nm in diameter and tens of mu m in length. Transmission electron microscopy analysis showed that the AuNSs were face-centered cubic in structure and that growths on the {111} facet were growth twins with mirror symmetry. Used as the base material for surface-enhanced Raman scattering, the structure of the trunk and dendrimers of the AuNSs create numerous hot spots, exhibiting a superior surface enhancement effect.en_US
dc.language.isoen_USen_US
dc.titleGold nanospiralsen_US
dc.typeArticleen_US
dc.identifier.doi10.1039/c5ra11492fen_US
dc.identifier.journalRSC ADVANCESen_US
dc.citation.volume5en_US
dc.citation.issue92en_US
dc.citation.spage75268en_US
dc.citation.epage75271en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.identifier.wosnumberWOS:000361120000037en_US
dc.citation.woscount4en_US
Appears in Collections:Articles


Files in This Item:

  1. ffc228c8d576c19ae6b4d653af3a1c78.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.