Full metadata record
DC FieldValueLanguage
dc.contributor.authorLan, Lawrence W.en_US
dc.contributor.authorHuang, Yeh-Chiehen_US
dc.date.accessioned2014-12-08T15:17:41Z-
dc.date.available2014-12-08T15:17:41Z-
dc.date.issued2006en_US
dc.identifier.issn1812-8602en_US
dc.identifier.urihttp://hdl.handle.net/11536/12842-
dc.description.abstractThis paper develops a rolling-trained fuzzy neural network (RTFNN) approach for freeway incident detection. The core logic of this approach is to establish a fuzzy neural network and to update the network parameters in response to the prevailing traffic conditions through a rolling-trained procedure. The simulation results of some thirty-six incident scenarios in a two-lane freeway mainline case study show that the proposed RTFNN approach can improve the detection performance over the fuzzy neural network approach, which is based on the same network structure but without updating the parameters through a rolling-trained procedure. The highest detection rate is found at a rolling horizon of 45 minutes and a training sample size of 90 samples in this case study.en_US
dc.language.isoen_USen_US
dc.subjectfreeway incident detectionen_US
dc.subjectfuzzy neural networken_US
dc.subjectrolling-trained fuzzy neural networken_US
dc.titleA rolling-trained fuzzy neural network approach for freeway incident detectionen_US
dc.typeArticleen_US
dc.identifier.journalTRANSPORTMETRICAen_US
dc.citation.volume2en_US
dc.citation.issue1en_US
dc.citation.spage11en_US
dc.citation.epage29en_US
dc.contributor.department運輸與物流管理系 註:原交通所+運管所zh_TW
dc.contributor.departmentDepartment of Transportation and Logistics Managementen_US
dc.identifier.wosnumberWOS:000243221900002-
dc.citation.woscount5-
Appears in Collections:Articles


Files in This Item:

  1. 000243221900002.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.