Full metadata record
DC FieldValueLanguage
dc.contributor.authorHuang, Kou-Yuanen_US
dc.contributor.authorYou, Jiun-Deen_US
dc.contributor.authorChen, Kai-Juen_US
dc.contributor.authorLai, Hung-Linen_US
dc.contributor.authorDon, An-Jinen_US
dc.date.accessioned2014-12-08T15:17:46Z-
dc.date.available2014-12-08T15:17:46Z-
dc.date.issued2006-01-01en_US
dc.identifier.isbn3-540-46481-6en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/12896-
dc.description.abstractHough transform neural network is adopted to detect line pattern of direct wave and hyperbola pattern of reflection wave in a seismogram. The distance calculation from point to hyperbola is calculated from the time difference. This calculation makes the parameter learning feasible. The neural network can calculate the total error for distance from point to patterns. The parameter learning rule is derived by gradient descent method to minimize the total error. Experimental results show that line and hyperbola can be detected in both simulated and real seismic data. The network can get a fast convergence. The detection results can improve the seismic interpretation.en_US
dc.language.isoen_USen_US
dc.titleHough transform neural network for seismic pattern detectionen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalNEURAL INFORMATION PROCESSING, PT 2, PROCEEDINGSen_US
dc.citation.volume4233en_US
dc.citation.issueen_US
dc.citation.spage60en_US
dc.citation.epage69en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000241753100007-
Appears in Collections:Conferences Paper