完整後設資料紀錄
DC 欄位語言
dc.contributor.authorWang, CYen_US
dc.contributor.authorTseng, SSen_US
dc.contributor.authorHong, TPen_US
dc.date.accessioned2014-12-08T15:17:50Z-
dc.date.available2014-12-08T15:17:50Z-
dc.date.issued2006en_US
dc.identifier.isbn3-540-33206-5en_US
dc.identifier.issn0302-9743en_US
dc.identifier.urihttp://hdl.handle.net/11536/12913-
dc.description.abstractIn the past, we proposed an extended multidimensional pattern relation (EMPR) to structurally and systematically store previously mining information for each inserted block of data, and designed a negative-border online mining (NOM) approach to provide ad-hoc, query-driven and online mining supports. In this paper, we try to use appropriate data structures and design efficient algorithms to improve the performance of the NOM approach. The lattice data structure is utilized to organize and maintain all candidate itemsets such that the candidate itemsets with the same proper subsets can be considered at the same time. The derived lattice-based NOM (LNOM) approach will require only one scan of the itemsets stored in EMPR, thus saving much computation time. In addition, a hashing technique is used to further improve the performance of the NOM approach since many itemsets stored in EMPR may be useless for calculating the counts of candidates. At last, experimental results show the effect of the improved NOM approaches.en_US
dc.language.isoen_USen_US
dc.titleImproved negative-border online mining approachesen_US
dc.typeArticle; Proceedings Paperen_US
dc.identifier.journalADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PROCEEDINGSen_US
dc.citation.volume3918en_US
dc.citation.spage483en_US
dc.citation.epage492en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000237249600056-
顯示於類別:會議論文