Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, MCen_US
dc.contributor.authorWu, SCen_US
dc.contributor.authorHsia, TCen_US
dc.contributor.authorHsu, SHen_US
dc.date.accessioned2014-12-08T15:17:50Z-
dc.date.available2014-12-08T15:17:50Z-
dc.date.issued2006-01-01en_US
dc.identifier.issn0268-3768en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00170-004-2250-0en_US
dc.identifier.urihttp://hdl.handle.net/11536/12926-
dc.description.abstractGroup technology must group similar parts into families. In classifying parts based on their global shapes, the similarity of parts has to be manually measured by performing pair comparison. The cost of exhaustively performing pair comparison is quite high when the number of parts to be grouped is large. This paper proposes interval intersection, a novel similarity inference method that effectively infers the pair-comparison data from a set of known data. Justified by empirical experiments, the proposed method outperforms the previous methods when 31% or more of data is known.en_US
dc.language.isoen_USen_US
dc.subjectcomparisonen_US
dc.subjectgroup technologyen_US
dc.subjectpairen_US
dc.subjectset intersectionen_US
dc.subjectsimilarity inferenceen_US
dc.titleA similarity inference method for reducing the cost of pair comparisonen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00170-004-2250-0en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGYen_US
dc.citation.volume27en_US
dc.citation.issue7-8en_US
dc.citation.spage774en_US
dc.citation.epage780en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000234194000020-
dc.citation.woscount0-
Appears in Collections:Articles


Files in This Item:

  1. 000234194000020.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.