Full metadata record
DC FieldValueLanguage
dc.contributor.authorCheng, Chang-Yuanen_US
dc.contributor.authorLin, Kuang-Huien_US
dc.contributor.authorShih, Chih-Wenen_US
dc.contributor.authorTseng, Jui-Pinen_US
dc.date.accessioned2016-03-28T00:04:08Z-
dc.date.available2016-03-28T00:04:08Z-
dc.date.issued2015-12-01en_US
dc.identifier.issn2162-237Xen_US
dc.identifier.urihttp://dx.doi.org/10.1109/TNNLS.2015.2404801en_US
dc.identifier.urihttp://hdl.handle.net/11536/129358-
dc.description.abstractIn this paper, we explore a variety of new multistability scenarios in the general delayed neural network system. Geometric structure embedded in equations is exploited and incorporated into the analysis to elucidate the underlying dynamics. Criteria derived from different geometric configurations lead to disparate numbers of equilibria. A new approach named sequential contracting is applied to conclude the global convergence to multiple equilibrium points of the system. The formulation accommodates both smooth sigmoidal and piecewise-linear activation functions. Several numerical examples illustrate the present analytic theory.en_US
dc.language.isoen_USen_US
dc.subjectComplete stabilityen_US
dc.subjectdelay equationsen_US
dc.subjectmultistabilityen_US
dc.subjectneural networken_US
dc.titleMultistability for Delayed Neural Networks via Sequential Contractingen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TNNLS.2015.2404801en_US
dc.identifier.journalIEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMSen_US
dc.citation.volume26en_US
dc.citation.issue12en_US
dc.citation.spage3109en_US
dc.citation.epage3122en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000365312800012en_US
dc.citation.woscount0en_US
Appears in Collections:Articles