Full metadata record
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Chen, Chi-Feng | en_US |
| dc.contributor.author | Chi, Sien | en_US |
| dc.date.accessioned | 2014-12-08T15:17:51Z | - |
| dc.date.available | 2014-12-08T15:17:51Z | - |
| dc.date.issued | 2006 | en_US |
| dc.identifier.issn | 0030-4026 | en_US |
| dc.identifier.uri | http://hdl.handle.net/11536/12946 | - |
| dc.identifier.uri | http://dx.doi.org/10.1016/j.ijleo.2005.11.012 | en_US |
| dc.description.abstract | The wave equation of TM polarized subwavelength beam propagations in a nonlinear planar waveguide is derived beyond the paraxial approximation. This modified equation contains more higher-order linear and nonlinear terms than the nonlinear Schrodinger equation. The propagation of fundamental subwavelength spatial solitons is numerically studied. It is shown that the effect of the higher nonlinear terms is significant. That is, for the propagation of narrower beam the modified nonlinear Schrodinger equation is more suitable than the nonlinear Schrodinger equation. (c) 2006 Elsevier GmbH. All rights reserved. | en_US |
| dc.language.iso | en_US | en_US |
| dc.subject | nonlinear effect | en_US |
| dc.subject | spatial soliton | en_US |
| dc.subject | subwavelength spatial soliton | en_US |
| dc.subject | nonlinear planar waveguide | en_US |
| dc.subject | nonlinear Schrodinger equation | en_US |
| dc.title | The modified propagation equation for TM polarized subwavelength spatial solitons in a nonlinear planar waveguide | en_US |
| dc.type | Article | en_US |
| dc.identifier.doi | 10.1016/j.ijleo.2005.11.012 | en_US |
| dc.identifier.journal | OPTIK | en_US |
| dc.citation.volume | 117 | en_US |
| dc.citation.issue | 10 | en_US |
| dc.citation.spage | 489 | en_US |
| dc.citation.epage | 491 | en_US |
| dc.contributor.department | 光電工程學系 | zh_TW |
| dc.contributor.department | Department of Photonics | en_US |
| dc.identifier.wosnumber | WOS:000241282300008 | - |
| dc.citation.woscount | 1 | - |
| Appears in Collections: | Articles | |
Files in This Item:
If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.

