Full metadata record
DC FieldValueLanguage
dc.contributor.authorLei, Hongchuanen_US
dc.contributor.authorFu, Hung-Linen_US
dc.date.accessioned2016-03-28T00:04:17Z-
dc.date.available2016-03-28T00:04:17Z-
dc.date.issued2016-01-01en_US
dc.identifier.issn0911-0119en_US
dc.identifier.urihttp://dx.doi.org/10.1007/s00373-015-1570-1en_US
dc.identifier.urihttp://hdl.handle.net/11536/129503-
dc.description.abstractGiven 2-factors and of order , let and be nonnegative integers with , the Hamilton-Waterloo problem asks for a 2-factorization of if is odd, or of if is even, in which of its 2-factors are isomorphic to and the other 2-factors are isomorphic to . In this paper, we solve the problem for the case of triangle-factors and heptagon-factors for odd with 3 possible exceptions when .en_US
dc.language.isoen_USen_US
dc.subjectCycle decompositionen_US
dc.subjectTriangle-factoren_US
dc.subjectHeptagon-factoren_US
dc.subject2-Factorizationen_US
dc.titleThe Hamilton-Waterloo Problem for Triangle-Factors and Heptagon-Factorsen_US
dc.typeArticleen_US
dc.identifier.doi10.1007/s00373-015-1570-1en_US
dc.identifier.journalGRAPHS AND COMBINATORICSen_US
dc.citation.volume32en_US
dc.citation.spage271en_US
dc.citation.epage278en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000367333000020en_US
dc.citation.woscount0en_US
Appears in Collections:Articles