Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Lei, Hongchuan | en_US |
dc.contributor.author | Fu, Hung-Lin | en_US |
dc.date.accessioned | 2016-03-28T00:04:17Z | - |
dc.date.available | 2016-03-28T00:04:17Z | - |
dc.date.issued | 2016-01-01 | en_US |
dc.identifier.issn | 0911-0119 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s00373-015-1570-1 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/129503 | - |
dc.description.abstract | Given 2-factors and of order , let and be nonnegative integers with , the Hamilton-Waterloo problem asks for a 2-factorization of if is odd, or of if is even, in which of its 2-factors are isomorphic to and the other 2-factors are isomorphic to . In this paper, we solve the problem for the case of triangle-factors and heptagon-factors for odd with 3 possible exceptions when . | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Cycle decomposition | en_US |
dc.subject | Triangle-factor | en_US |
dc.subject | Heptagon-factor | en_US |
dc.subject | 2-Factorization | en_US |
dc.title | The Hamilton-Waterloo Problem for Triangle-Factors and Heptagon-Factors | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s00373-015-1570-1 | en_US |
dc.identifier.journal | GRAPHS AND COMBINATORICS | en_US |
dc.citation.volume | 32 | en_US |
dc.citation.spage | 271 | en_US |
dc.citation.epage | 278 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000367333000020 | en_US |
dc.citation.woscount | 0 | en_US |
Appears in Collections: | Articles |