Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, GJen_US
dc.contributor.authorKuo, Den_US
dc.date.accessioned2014-12-08T15:02:39Z-
dc.date.available2014-12-08T15:02:39Z-
dc.date.issued1996-05-01en_US
dc.identifier.issn0895-4801en_US
dc.identifier.urihttp://hdl.handle.net/11536/1295-
dc.description.abstractAn L(2, 1)-labeling of a graph G is a function f from the vertex set V(G) to the set of all nonnegative integers such that f(x) - f(y) greater than or equal to 2 if d(x, y) = 1 and f(x) - f(y) greater than or equal to 1 if d(x, y) = 2. The L(2, 1)-labeling number lambda(G) of G is the smallest number Ic such that G has an L(2, 1)-labeling with max{f(v) : v is an element of V(G)} = k. In this paper, we give exact formulas of lambda(G boolean OR H) and lambda(G + H). We also prove that lambda(G) less than or equal to Delta(2) + Delta for any graph G of maximum degree Delta. For odd-sun-free (OSF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to 2 Delta + 1. For sun-free (SF)-chordal graphs, the upper bound can be reduced to lambda(G) less than or equal to Delta + 2 chi(G) - 2. Finally, we present a polynomial time algorithm to determine lambda(T) for a tree T.en_US
dc.language.isoen_USen_US
dc.subjectL(2,1)-labelingen_US
dc.subjectT-coloringen_US
dc.subjectunionen_US
dc.subjectjoinen_US
dc.subjectchordal graphen_US
dc.subjectperfect graphen_US
dc.subjecttreeen_US
dc.subjectbipartite matchingen_US
dc.subjectalgorithmen_US
dc.titleThe L(2,1)-labeling problem on graphsen_US
dc.typeArticleen_US
dc.identifier.journalSIAM JOURNAL ON DISCRETE MATHEMATICSen_US
dc.citation.volume9en_US
dc.citation.issue2en_US
dc.citation.spage309en_US
dc.citation.epage316en_US
dc.contributor.department交大名義發表zh_TW
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentNational Chiao Tung Universityen_US
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1996UL33300013-
dc.citation.woscount213-
Appears in Collections:Articles


Files in This Item:

  1. A1996UL33300013.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.