標題: | A Novel Mechanism to Fuse Various Sub-aspect Brain-computer Interface (BCI) Systems with PSO for Motor Imagery Task |
作者: | Lin, Chin-Teng Hsieh, Tsung-Yu Liu, Yu-Ting Wu, Shang-Lin Lin, Yang-Yin 電控工程研究所 腦科學研究中心 Institute of Electrical and Control Engineering Brain Research Center |
關鍵字: | brain-computer interface (BCI);motor imagery (MI);sub-band common spatial pattern (SBCSP);fuzzy neural network (FNN);fuzzy integral (FI);particle swarm optimization (PSO) |
公開日期: | 1-Jan-2015 |
摘要: | In this study, we develop a novel multi-fusion brain-computer interface (BCI) system based on a fuzzy neural network (FNN) and information fusion approaches to cope with a classification task for identifying right/left hand motor imagery. In the proposed system, we utilize a filter bank and sub-band common spatial pattern (SBCSP) to extract features from raw EEG data. A self-organizing neural fuzzy inference network (SONFIN) is then applied for a recognition task. In order to improve the classification performance, we form a committee of networks and employ fuzzy integral (FI) to attain a joint decision. To further optimize the fusion approaches, a particle swarm optimization (PSO) algorithm is exploited to globally update parameters used in the fusion stage. In consequence, our experimental result shows that the proposed fuzzy fusion system possesses superior performance compared to other comparative models. |
URI: | http://dx.doi.org/10.1109/SMC.2015.559 http://hdl.handle.net/11536/129826 |
ISBN: | 978-1-4799-8696-5 |
ISSN: | 1062-922X |
DOI: | 10.1109/SMC.2015.559 |
期刊: | 2015 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC 2015): BIG DATA ANALYTICS FOR HUMAN-CENTRIC SYSTEMS |
起始頁: | 3223 |
結束頁: | 3228 |
Appears in Collections: | Conferences Paper |