标题: | 高效能巨量资料分析系统之关键技术研发及其在电信流量管理之应用---子计画三:高效能巨量资料分析系统之软体定义网路技术研发及其在电信流量管理之应用 Application-Aware Software Defined Networking in High Performance Big Data Analysis System and Its Applications on Telecommunication Traffic Management |
作者: | 王国祯 WANG KUO-CHEN 国立交通大学资讯工程学系(所) |
关键字: | 应用感知;巨量资料;云端资料中心;软体定义网路;流量管理;Application-Aware;Big Data;Cloud Data Center;Software Defined Networking;_x000d_ Traffic Management |
公开日期: | 2015 |
摘要: | 随着在云端资料中心内运行的巨量资料应用程式越來越多,资料中心内交换器之间 传送的封包數量也会大幅增加。此现象会导致部分交换器之间的路径拥塞,因而降低资 料中心整体之效能。为解决上述问题,本子计画将探讨新一代的软体定义网路 (Software-Defined Networking, SDN)架构。SDN 藉着将交换器资料层与控制层分離的技 术,进一步将云端资料中心内的网路也虚拟化。透过我们设计的基于需求表之应用感知 SDN 最佳路径演算法,当有多重路径可选择时,可以在路径频宽及节点(如交换器)资源 有限下,预先分配及动态调整网路资源,使得云端资料中心网路在高负载或有故障的元 件下,依然能确保每一个应用程式(含巨量资料应用程式)或用户,能满足其所需的网路 服务品质及应用程式之服务水准协议。此外,我们会将SDN 的研究从云端资料中心网 路延伸至电信核心网路上。我们也将研究何种资料中心之实体网路拓朴,最适合应用 SDN。 本子计画将利用子计画五及六所提供的云端资料中心网路(或电信核心网路)流量事 件处理及资料探勘结果,供SDN 控制器对交换器做存取控制,如更改其流量表,以达 到资料中心网路(或电信核心网路)路径最佳化,以避免网路壅塞及使用者体验品质下降 的情况。另外,本子计画将支援子计画一、二及四所需之高效能网路存取。本子计画预 计在三年内完成。在第一年中,我们将广泛的进行相关文献的探讨,提出适用于云端资 料中心的应用感知SDN 之路径最佳化方法,并评估不同的资料中心网路拓朴对SDN 的 适用性。我们将建构资料中心SDN 测试平台,利用Hadoop 让巨量资料应用程式平行运 作在此平台上,并作效能评估。在第二年中,我们将设计适用于电信核心网路的应用感 知SDN 之路径最佳化演算法、建构SDN 与电信网路的整合测试平台,以及与其他子计 画做初步的整合。在第三年中,我们将电信核心网路的SDN 路径最佳化演算法布署到 电信网路测试平台,并做效能评估。同时我们也将研究多个控制器之协同运作机制,以 解决SDN 之延展性(scalability)问题。最后,我们将完成与其他子计画的整合。本子计画 的预期研究成果将能够协助云端资料中心及电信业者设计适用于自身实体网路拓朴的 应用感知SDN 网路,以避免网路瓶颈,从而提高云端资料中心网路及电信核心网路的 延展性、可靠性及运作效能。 With the increase of big data applications in the cloud data center, the number of packets transmitted between switches greatly increases. It may result in congestion of data paths between certain switches and reduce the overall performance of the cloud data center. To resolve this problem, this subproject will study software defined networking (SDN), which is a form of network virtualization that separates the control plane from the data plane. By the proposed demand table based application-aware SDN path optimization algorithm, when there are multiple paths available, we may pre-allocate and dynamically adjust network resources under the constraints of path bandwidth and nodes (such as switches) resources. In this way, when the data center is overloaded or has failed components, running applications can still meet their service level agreements. In addition, we will extend our SDN study from the cloud data center to the telecommunication core network. We will also study which data center network topology is the best fit for SDN. This subproject will utilize the traffic event processing and data mining results provided by subprojects 5 and 6 for SDN controllers to update the flow tables of related switches so as to achieve path optimization and avoid network congestion and poor user experience in the cloud data center (or telecommunication core network). This subproject will support subprojects 1, 2, and 4 to have efficient network access. This subproject is expected to be completed within three years. In the first year, we will review related work on SDN path optimization. We will propose an efficient application-aware SDN path optimization approach and evaluate SDN feasibility of different network topologies in a cloud data center. We will set up an SDN testbed in a cloud data center and run Hadoop-enabled big data applications to evaluate our approach. In the second year, we will extend our application-aware SDN path optimization approach to a telecommunication core network. Then, we will begin to integrate our subproject with the other subprojects. In the third year, we will deploy our application-aware SDN path optimization algorithm to a telecommunication network testbed and evaluate its performance. In addition, to deal with SDN scalability, we will propose a multiple SDN controllers collaboration mechanism. In summary, the expected results of this subproject can greatly enhance the feasibility of realizing an application-aware SDN-enabled network topology for cloud data centers and telecommunication core networks so as to avoid network congestion and enhance network scalability, reliability, and performance. |
官方说明文件#: | NSC102-2221-E009-090-MY3 |
URI: | http://hdl.handle.net/11536/129999 https://www.grb.gov.tw/search/planDetail?id=11268469&docId=454482 |
显示于类别: | Research Plans |