標題: | Partition of a set of integers into subsets, with prescribed sums |
作者: | Chen, FL Fu, HL Wang, YJ Zhou, JQ 應用數學系 Department of Applied Mathematics |
關鍵字: | partition;integer partition;graph decomposition |
公開日期: | 1-十二月-2005 |
摘要: | A nonincreasing sequence of positive integers < m(1), m(2),(...), m(k)> is said to be n-realizable if the set I-n = {1, 2,(...), n} can be partitioned into k mutually disjoint subsets S-1, S-2,(...), S-k such that Sigma(x is an element of Si) x = m(i) for each 1. <= i <= k. In this paper, we will prove. that a nonincreasing sequence of positive integers < m(1), m(2),(...),m(k)> is n-realizable under the. conditions that Sigma(i=1)(k) m(i) = ((n+1)(2)) and m(k-1) >= n. |
URI: | http://hdl.handle.net/11536/13031 |
ISSN: | 1027-5487 |
期刊: | TAIWANESE JOURNAL OF MATHEMATICS |
Volume: | 9 |
Issue: | 4 |
起始頁: | 629 |
結束頁: | 638 |
顯示於類別: | 期刊論文 |