完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chang, FH | en_US |
dc.contributor.author | Hwang, FK | en_US |
dc.date.accessioned | 2014-12-08T15:18:11Z | - |
dc.date.available | 2014-12-08T15:18:11Z | - |
dc.date.issued | 2005-11-01 | en_US |
dc.identifier.issn | 0925-5001 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1007/s10898-004-7391-z | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13142 | - |
dc.description.abstract | Supermodularity of the lambda function which defines a permutation polytope has proved to be crucial for the polytope to have some nice fundamental properties. Supermodularity has been established for the lambda function for the sum-partition problem under various models. On the other hand, supermodularity has not been established for the mean-partition problem even for the most basic labeled single-shape model. In this paper, we fill this gap and also settle for all other models except one. We further extend our results to other types of supermodularity. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | mean-partition | en_US |
dc.subject | supermodular | en_US |
dc.title | Supermodularity in mean-partition problems | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1007/s10898-004-7391-z | en_US |
dc.identifier.journal | JOURNAL OF GLOBAL OPTIMIZATION | en_US |
dc.citation.volume | 33 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 337 | en_US |
dc.citation.epage | 347 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000233324900002 | - |
dc.citation.woscount | 1 | - |
顯示於類別: | 期刊論文 |