完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, Chin-Yien_US
dc.contributor.authorHuang, Jih-Jengen_US
dc.contributor.authorTzeng, Gwo-Hshiungen_US
dc.date.accessioned2014-12-08T15:18:13Z-
dc.date.available2014-12-08T15:18:13Z-
dc.date.issued2009en_US
dc.identifier.isbn978-3-642-02297-5en_US
dc.identifier.issn1865-0929en_US
dc.identifier.urihttp://hdl.handle.net/11536/13178-
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-642-02298-2_111en_US
dc.description.abstractIn economics, several parametric regression-based models have been proposed to measure the technical efficiency of decision making units (DMUs). However, the problem of misspecification restricts the use of these methods. In this paper, symbolic regression is employed to obtain the approximate optimal production function automatically using genetic programming (GP). Monte Carlo simulation is used to compare the performance of data envelopment analysis (DEA), deterministic frontier analysis (DFA) and GP-based DFA with respect to three different production functions and sample sizes. The simulated results indicated that the proposed method has better performance than that of others with respect to nonlinear production functions.en_US
dc.language.isoen_USen_US
dc.subjectTechnical efficiencyen_US
dc.subjectsymbolic regressionen_US
dc.subjectgenetic programming (GP)en_US
dc.subjectMonte Carlo simulationen_US
dc.subjectdata envelopment analysis (DEA)en_US
dc.titleNonlinear Deterministic Frontier Model Using Genetic Programmingen_US
dc.typeProceedings Paperen_US
dc.identifier.doi10.1007/978-3-642-02298-2_111en_US
dc.identifier.journalCUTTING-EDGE RESEARCH TOPICS ON MULTIPLE CRITERIA DECISION MAKING, PROCEEDINGSen_US
dc.citation.volume35en_US
dc.citation.spage753en_US
dc.citation.epage760en_US
dc.contributor.department科技管理研究所zh_TW
dc.contributor.departmentInstitute of Management of Technologyen_US
dc.identifier.wosnumberWOS:000269751700111-
顯示於類別:會議論文


文件中的檔案:

  1. 000269751700111.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。