Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, JLen_US
dc.contributor.authorLee, TTen_US
dc.date.accessioned2014-12-08T15:18:19Z-
dc.date.available2014-12-08T15:18:19Z-
dc.date.issued2005-10-01en_US
dc.identifier.issn1083-4419en_US
dc.identifier.urihttp://dx.doi.org/10.1109/TSMCB.2005.846650en_US
dc.identifier.urihttp://hdl.handle.net/11536/13213-
dc.description.abstractThe problem of optimal simultaneous regional pole placement for a collection of linear time-invariant systems via a single static output feedback controller is considered. The cost function to be minimized is a weighted sum of quadratic performance indices of the systems. The constrained region for each system can be the intersection of several open half-planes and/or open disks. This problem cannot be solved by the linear matrix inequality (LMI) approach since it is a nonconvex optimization problem. Based on the barrier method, we instead solve an auxiliary minimization problem to obtain an approximate solution to the original constrained optimization problem. Moreover, solution algorithms are provided for finding the optimal solution. Furthermore, a necessary and sufficient condition for the existence of admissible solutions to the simultaneous regional pole placement problem is derived. Finally, two examples are given for illustration.en_US
dc.language.isoen_USen_US
dc.subjectbarrier methoden_US
dc.subjectconstrained optimizationen_US
dc.subjectregional pole placementen_US
dc.subjectsimultaneous stabilizationen_US
dc.titleOptimal static output feedback simultaneous regional pole placementen_US
dc.typeArticleen_US
dc.identifier.doi10.1109/TSMCB.2005.846650en_US
dc.identifier.journalIEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICSen_US
dc.citation.volume35en_US
dc.citation.issue5en_US
dc.citation.spage881en_US
dc.citation.epage893en_US
dc.contributor.department電控工程研究所zh_TW
dc.contributor.departmentInstitute of Electrical and Control Engineeringen_US
dc.identifier.wosnumberWOS:000232384200003-
dc.citation.woscount13-
Appears in Collections:Articles


Files in This Item:

  1. 000232384200003.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.