完整後設資料紀錄
DC 欄位語言
dc.contributor.authorLin, Szu-Yinen_US
dc.contributor.authorChung, Chia-Chenen_US
dc.contributor.authorHu, Wei-Cheen_US
dc.contributor.authorHung, Chihlien_US
dc.contributor.authorChen, Shih-Lunen_US
dc.contributor.authorLin, Ting-Lanen_US
dc.date.accessioned2019-04-03T06:39:49Z-
dc.date.available2019-04-03T06:39:49Z-
dc.date.issued2016-07-01en_US
dc.identifier.issn1550-1477en_US
dc.identifier.urihttp://dx.doi.org/10.1177/1550147716657925en_US
dc.identifier.urihttp://hdl.handle.net/11536/132570-
dc.description.abstractWith the rise of the Internet of things, the smart environmental issue is becoming increasingly important. Sensor web is one of the best solutions to this issue and provides the advantages of sensor networks and web services. Ontology web language for services (OWL-S) is an OWL-based web services ontology, which provides the ability to describe the semantics of web services and their capabilities in a formal and machine-processable manner. Moreover, it aids semantic service matching, selection and composition. However, automatically annotating semantic web services is a highly complicated and tedious task. In this study, we propose a methodology to uncover information in the history data and profiles of web services and then semantically annotate them. With the proposed approach, semantic relationships between web services could be extracted via a combination of association rules and input/ output matching. Our results show that this hybrid automated knowledge-discovery approach works better than traditional approaches do. We also provide a scenario to explain how the proposed methodology works.en_US
dc.language.isoen_USen_US
dc.subjectWeb servicesen_US
dc.subjectsemantic annotationen_US
dc.subjectknowledge discovery in servicesen_US
dc.subjectOWL-Sen_US
dc.titleAutomated knowledge discovery and semantic annotation for network and web servicesen_US
dc.typeArticleen_US
dc.identifier.doi10.1177/1550147716657925en_US
dc.identifier.journalINTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKSen_US
dc.citation.volume12en_US
dc.citation.issue7en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department資訊管理與財務金融系 註:原資管所+財金所zh_TW
dc.contributor.departmentDepartment of Information Management and Financeen_US
dc.identifier.wosnumberWOS:000383389000027en_US
dc.citation.woscount0en_US
顯示於類別:期刊論文


文件中的檔案:

  1. 3bf35c675fad0feda073cff4cb1da180.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。