Full metadata record
DC FieldValueLanguage
dc.contributor.authorTsai, Tsung-Lingen_US
dc.contributor.authorJiang, Fa-Shenen_US
dc.contributor.authorHo, Chia-Huaen_US
dc.contributor.authorLin, Chen-Hsien_US
dc.contributor.authorTseng, Tseung-Yuenen_US
dc.date.accessioned2017-04-21T06:56:40Z-
dc.date.available2017-04-21T06:56:40Z-
dc.date.issued2016-10en_US
dc.identifier.issn0741-3106en_US
dc.identifier.urihttp://dx.doi.org/10.1109/LED.2016.2602886en_US
dc.identifier.urihttp://hdl.handle.net/11536/132656-
dc.description.abstractIn this letter, we propose a new method to improve resistive switching properties in ZrO2-based conductive-bridge resistive memory devices by introducing a thin AlN layer with high thermal conductivity between the ZrO2 layer and TiN bottom electrode. Compared with the Cu/TiW/ZrO2/TiN single-layer device, the Cu/TiW/ZrO2/AlN/TiN bilayer device exhibits lower operation voltages, higher endurance performance, and higher resistive switching uniformity. These substantial improvements in the resistive switching properties are attributed to the formation and rupture of conductive filament that can be effectively controlled in the device after inserting the AlN layer.en_US
dc.language.isoen_USen_US
dc.subjectAlNen_US
dc.subjectconductive-bridge random access memory (CBRAM)en_US
dc.subjectconductive filament (CF)en_US
dc.subjectthermal conductivityen_US
dc.titleEnhanced Properties in Conductive-Bridge Resistive Switching Memory With Oxide-Nitride Bilayer Structureen_US
dc.identifier.doi10.1109/LED.2016.2602886en_US
dc.identifier.journalIEEE ELECTRON DEVICE LETTERSen_US
dc.citation.volume37en_US
dc.citation.issue10en_US
dc.citation.spage1284en_US
dc.citation.epage1287en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000385371100007en_US
Appears in Collections:Articles