Full metadata record
DC FieldValueLanguage
dc.contributor.authorWu, Qen_US
dc.contributor.authorLu, CLen_US
dc.contributor.authorLee, RCTen_US
dc.date.accessioned2014-12-08T15:18:24Z-
dc.date.available2014-12-08T15:18:24Z-
dc.date.issued2005-09-05en_US
dc.identifier.issn0304-3975en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.tcs.2005.03.043en_US
dc.identifier.urihttp://hdl.handle.net/11536/13277-
dc.description.abstractGiven a graph, the Hamiltonian path completion problem is to find an augmenting edge set such that the augmented graph has a Hamiltonian path. In this paper, we show that the Hamiltonian path completion problem will unlikely have any constant ratio approximation algorithm unless NP = P. This problem remains hard to approximate even when the given subgraph is a tree. Moreover, if the edge weights are restricted to be either 1 or 2, the Hamiltonian path completion problem on a tree is still NP-hard. Then it is observed that this problem is strongly NP-hard, so it does not have any fully polynomial-time approximation scheme (FPTAS) unless NP = P. When the given tree is a k-tree, we give an approximation algorithm with performance ratio 1.5. (c) 2005 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectHamiltonian path completion problemen_US
dc.subjecttreesen_US
dc.subjectstrongly NP-harden_US
dc.subjectapproximation algorithmen_US
dc.subjectfully polynomial-time approximation schemeen_US
dc.titleThe approximability of the weighted Hamiltonian path completion problem on a treeen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/j.tcs.2005.03.043en_US
dc.identifier.journalTHEORETICAL COMPUTER SCIENCEen_US
dc.citation.volume341en_US
dc.citation.issue1-3en_US
dc.citation.spage385en_US
dc.citation.epage397en_US
dc.contributor.department生物科技學系zh_TW
dc.contributor.departmentDepartment of Biological Science and Technologyen_US
dc.identifier.wosnumberWOS:000231660900020-
dc.citation.woscount1-
Appears in Collections:Articles


Files in This Item:

  1. 000231660900020.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.