Full metadata record
DC FieldValueLanguage
dc.contributor.authorZhao, Len_US
dc.contributor.authorLai, YCen_US
dc.contributor.authorShih, CWen_US
dc.date.accessioned2019-04-03T06:42:51Z-
dc.date.available2019-04-03T06:42:51Z-
dc.date.issued2005-09-01en_US
dc.identifier.issn2470-0045en_US
dc.identifier.urihttp://dx.doi.org/10.1103/PhysRevE.72.036212en_US
dc.identifier.urihttp://hdl.handle.net/11536/13292-
dc.description.abstractCoupled chaotic oscillators can exhibit intermittent synchronization in the weakly coupling regime, as characterized by the entrainment of their dynamical variables in random time intervals of finite duration. We find that the transition to intermittent synchronization can be characteristically distinct for geometrically different chaotic attractors. In particular, for coupled phase-coherent chaotic attractors such as those from the Rossler system, the transition occurs immediately as the coupling is increased from zero. For phase-incoherent chaotic attractors such as those in the Lorenz system, the transition occurs only when the coupling is sufficiently strong. A theory based on the behavior of the Lyapunov exponents and unstable periodic orbits is developed to understand these distinct transitions.en_US
dc.language.isoen_USen_US
dc.titleTransition to intermittent chaotic synchronizationen_US
dc.typeArticleen_US
dc.identifier.doi10.1103/PhysRevE.72.036212en_US
dc.identifier.journalPHYSICAL REVIEW Een_US
dc.citation.volume72en_US
dc.citation.issue3en_US
dc.citation.spage0en_US
dc.citation.epage0en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000232227800053en_US
dc.citation.woscount9en_US
Appears in Collections:Articles


Files in This Item:

  1. 025dab576607140c8f03ce8a71f0bce2.pdf

If it is a zip file, please download the file and unzip it, then open index.html in a browser to view the full text content.