完整後設資料紀錄
DC 欄位語言
dc.contributor.authorFu, TSen_US
dc.contributor.authorHuang, TYen_US
dc.date.accessioned2014-12-08T15:02:41Z-
dc.date.available2014-12-08T15:02:41Z-
dc.date.issued1996-05-01en_US
dc.identifier.issn0378-3758en_US
dc.identifier.urihttp://dx.doi.org/10.1016/0378-3758(95)00090-9en_US
dc.identifier.urihttp://hdl.handle.net/11536/1329-
dc.description.abstractA finite incidence structure Pi = (X,B) is called a quasi-semisymmetric design (QSSD) with nexus alpha if there exist positive integers lambda, mu, and alpha such that any two distinct points are in 0 or lambda common blocks, any two distinct blocks are incident with 0 or mu common points, and for each nonincident point-block pair (x,B), there are exactly alpha blocks B' with x is an element of B' and B' boolean AND B not equal theta. Symmetric designs, semisymmetric designs, and partial lambda-geometries are among such structures. In this paper, in addition to some general properties, we study the existence conditions for QSSDs with mu = lambda - 1 greater than or equal to 2 and the properties of QSSDs satisfying the following extremal condition: if B-1 and B-2 are two blocks with a nonempty intersection, then there are another lambda - 2 blocks B-3,...,B-lambda such that boolean AND(1) less than or equal to i less than or equal to lambda B-i = B-1 boolean AND B-2. We show that alpha greater than or equal to (lambda(2)(mu-1)+lambda)/mu under such a condition, and QSSDs with equality are classified whenever mu = lambda or mu = lambda - 1 following a classification of affine polar spaces by Cohen and Shult (Geometraic Dedicata 35 (1990), 43-76).en_US
dc.language.isoen_USen_US
dc.titleQuasi-semisymmetric designs with extremal conditionsen_US
dc.typeArticleen_US
dc.identifier.doi10.1016/0378-3758(95)00090-9en_US
dc.identifier.journalJOURNAL OF STATISTICAL PLANNING AND INFERENCEen_US
dc.citation.volume51en_US
dc.citation.issue3en_US
dc.citation.spage261en_US
dc.citation.epage271en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:A1996UJ13700001-
dc.citation.woscount0-
顯示於類別:期刊論文


文件中的檔案:

  1. A1996UJ13700001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。