Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Guo, Jia-Wei | en_US |
dc.contributor.author | Yang, Yifan | en_US |
dc.date.accessioned | 2017-04-21T06:56:20Z | - |
dc.date.available | 2017-04-21T06:56:20Z | - |
dc.date.issued | 2017-01 | en_US |
dc.identifier.issn | 0010-437X | en_US |
dc.identifier.uri | http://dx.doi.org/10.1112/S0010437X16007739 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/133216 | - |
dc.description.abstract | By constructing suitable Borcherds forms on Shimura curves and using Schofer\'s formula for norms of values of Borcherds forms at CM points, we determine all of the equations of hyperelliptic Shimura curves X-0(D) (N). As a byproduct, we also address the problem of whether a modular form on Shimura curves X-0(D) (N)/W-D,W-N with a divisor supported on CM divisors can be realized as a Borcherds form, where X-0(D) (N)/W-D,W-N denotes the quotient of X-0(D) (N) by all of the Atkin-Lehner involutions. The construction of Borcherds forms is done by solving certain integer programming problems. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | Borcherds forms | en_US |
dc.subject | Shimura curves | en_US |
dc.title | Equations of hyperelliptic Shimura curves | en_US |
dc.identifier.doi | 10.1112/S0010437X16007739 | en_US |
dc.identifier.journal | COMPOSITIO MATHEMATICA | en_US |
dc.citation.volume | 153 | en_US |
dc.citation.issue | 1 | en_US |
dc.citation.spage | 1 | en_US |
dc.citation.epage | 40 | en_US |
dc.contributor.department | 應用數學系 | zh_TW |
dc.contributor.department | Department of Applied Mathematics | en_US |
dc.identifier.wosnumber | WOS:000394432100001 | en_US |
Appears in Collections: | Articles |