Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Tolyen_US
dc.date.accessioned2017-04-21T06:56:09Z-
dc.date.available2017-04-21T06:56:09Z-
dc.date.issued2017-01en_US
dc.identifier.issn0360-8352en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.cie.2016.11.021en_US
dc.identifier.urihttp://hdl.handle.net/11536/133253-
dc.description.abstractEstimating the future yield of a product is a crucial task for semiconductor manufacturers. However, existing methods cannot differentiate the effects of various sources of yield improvement. To address this concern, this study proposes an innovative approach for modeling the yield learning process of a semiconductor product with artificial neural networks, which enable separating the effects of various sources of yield learning. Two real cases were used to demonstrate the effectiveness of the proposed methodology. (C) 2016 Elsevier Ltd. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectYielden_US
dc.subjectLearningen_US
dc.subjectSemiconductoren_US
dc.subjectArtificial neural networken_US
dc.titleAn ANN approach for modeling the multisource yield learning process with semiconductor manufacturing as an exampleen_US
dc.identifier.doi10.1016/j.cie.2016.11.021en_US
dc.identifier.journalCOMPUTERS & INDUSTRIAL ENGINEERINGen_US
dc.citation.volume103en_US
dc.citation.spage98en_US
dc.citation.epage104en_US
dc.contributor.department工業工程與管理學系zh_TW
dc.contributor.departmentDepartment of Industrial Engineering and Managementen_US
dc.identifier.wosnumberWOS:000393527400009en_US
Appears in Collections:Articles