Full metadata record
DC FieldValueLanguage
dc.contributor.authorChen, Hsin-Pingen_US
dc.contributor.authorHuang, Chun-Weien_US
dc.contributor.authorWang, Chun-Wenen_US
dc.contributor.authorWu, Wen-Weien_US
dc.contributor.authorLiao, Chien-Nengen_US
dc.contributor.authorChen, Lih-Juannen_US
dc.contributor.authorTu, King-Ningen_US
dc.date.accessioned2017-04-21T06:55:33Z-
dc.date.available2017-04-21T06:55:33Z-
dc.date.issued2016en_US
dc.identifier.issn2040-3364en_US
dc.identifier.urihttp://dx.doi.org/10.1039/c5nr05418den_US
dc.identifier.urihttp://hdl.handle.net/11536/133341-
dc.description.abstractBy adding nanotwins to Cu, the surface electromigration (EM) slows down. The atomic mobility of the surface step-edges is retarded by the triple points where a twin meets a free surface to form a zigzag-type surface. We observed that EM can alter the zigzag surface structure to optimize the reduction of EM, according to Le Chatelier\'s principle. Statistically, the optimal alternation is to change an arbitrary (111)/(hkl) zigzag pair to a pair having a very low index (hkl) plane, especially the (200) plane. Using in situ ultrahigh vacuum and high-resolution transmission electron microscopy, we examined the effects of different zigzag surfaces on the rate of EM. The calculated rate of surface EM can be decreased by a factor of ten.en_US
dc.language.isoen_USen_US
dc.titleOptimization of the nanotwin-induced zigzag surface of copper by electromigrationen_US
dc.identifier.doi10.1039/c5nr05418den_US
dc.identifier.journalNANOSCALEen_US
dc.citation.volume8en_US
dc.citation.issue5en_US
dc.citation.spage2584en_US
dc.citation.epage2588en_US
dc.contributor.department材料科學與工程學系zh_TW
dc.contributor.departmentDepartment of Materials Science and Engineeringen_US
dc.identifier.wosnumberWOS:000369591400011en_US
Appears in Collections:Articles