完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.author | Chen, YP | en_US |
dc.contributor.author | Goldberg, DE | en_US |
dc.date.accessioned | 2014-12-08T15:18:33Z | - |
dc.date.available | 2014-12-08T15:18:33Z | - |
dc.date.issued | 2005-09-01 | en_US |
dc.identifier.issn | 1063-6560 | en_US |
dc.identifier.uri | http://dx.doi.org/10.1162/1063656054794806 | en_US |
dc.identifier.uri | http://hdl.handle.net/11536/13352 | - |
dc.description.abstract | This paper identifies the sequential behavior of the linkage learning genetic algorithm, introduces the tightness time model for a single building block, and develops the connection between the sequential behavior and the tightness time model. By integrating the first-building-block model based on the sequential behavior, the tightness time model, and the connection between these two models, a convergence time model is constructed and empirically verified. The proposed convergence time model explains the exponentially growing time required by the linkage learning genetic algorithm when solving uniformly scaled problems. | en_US |
dc.language.iso | en_US | en_US |
dc.subject | genetic algorithms | en_US |
dc.subject | genetic linkage | en_US |
dc.subject | linkage learning | en_US |
dc.subject | linkage learning genetic algorithm | en_US |
dc.subject | sequential behavior | en_US |
dc.subject | tightness time | en_US |
dc.subject | convergence time | en_US |
dc.title | Convergence time for the linkage learning genetic algorithm | en_US |
dc.type | Article | en_US |
dc.identifier.doi | 10.1162/1063656054794806 | en_US |
dc.identifier.journal | EVOLUTIONARY COMPUTATION | en_US |
dc.citation.volume | 13 | en_US |
dc.citation.issue | 3 | en_US |
dc.citation.spage | 279 | en_US |
dc.citation.epage | 302 | en_US |
dc.contributor.department | 資訊工程學系 | zh_TW |
dc.contributor.department | Department of Computer Science | en_US |
dc.identifier.wosnumber | WOS:000231590200001 | - |
dc.citation.woscount | 8 | - |
顯示於類別: | 期刊論文 |