完整後設資料紀錄
DC 欄位語言
dc.contributor.authorChen, YPen_US
dc.contributor.authorGoldberg, DEen_US
dc.date.accessioned2014-12-08T15:18:33Z-
dc.date.available2014-12-08T15:18:33Z-
dc.date.issued2005-09-01en_US
dc.identifier.issn1063-6560en_US
dc.identifier.urihttp://dx.doi.org/10.1162/1063656054794806en_US
dc.identifier.urihttp://hdl.handle.net/11536/13352-
dc.description.abstractThis paper identifies the sequential behavior of the linkage learning genetic algorithm, introduces the tightness time model for a single building block, and develops the connection between the sequential behavior and the tightness time model. By integrating the first-building-block model based on the sequential behavior, the tightness time model, and the connection between these two models, a convergence time model is constructed and empirically verified. The proposed convergence time model explains the exponentially growing time required by the linkage learning genetic algorithm when solving uniformly scaled problems.en_US
dc.language.isoen_USen_US
dc.subjectgenetic algorithmsen_US
dc.subjectgenetic linkageen_US
dc.subjectlinkage learningen_US
dc.subjectlinkage learning genetic algorithmen_US
dc.subjectsequential behavioren_US
dc.subjecttightness timeen_US
dc.subjectconvergence timeen_US
dc.titleConvergence time for the linkage learning genetic algorithmen_US
dc.typeArticleen_US
dc.identifier.doi10.1162/1063656054794806en_US
dc.identifier.journalEVOLUTIONARY COMPUTATIONen_US
dc.citation.volume13en_US
dc.citation.issue3en_US
dc.citation.spage279en_US
dc.citation.epage302en_US
dc.contributor.department資訊工程學系zh_TW
dc.contributor.departmentDepartment of Computer Scienceen_US
dc.identifier.wosnumberWOS:000231590200001-
dc.citation.woscount8-
顯示於類別:期刊論文


文件中的檔案:

  1. 000231590200001.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。