Full metadata record
DC FieldValueLanguage
dc.contributor.authorChang, Yu-Hongen_US
dc.contributor.authorYu, Ming-Jiueen_US
dc.contributor.authorLin, Ruei-Pingen_US
dc.contributor.authorHsu, Chih-Pinen_US
dc.contributor.authorHou, Tuo-Hungen_US
dc.date.accessioned2017-04-21T06:56:00Z-
dc.date.available2017-04-21T06:56:00Z-
dc.date.issued2016-01-18en_US
dc.identifier.issn0003-6951en_US
dc.identifier.urihttp://dx.doi.org/10.1063/1.4939905en_US
dc.identifier.urihttp://hdl.handle.net/11536/133548-
dc.description.abstractLow-temperature atomic layer deposition (ALD) was employed to deposit Al2O3 as a gate dielectric in amorphous In-Ga-Zn-O thin-film transistors fabricated at temperatures below 120 degrees C. The devices exhibited a negligible threshold voltage shift (Delta V-T) during negative bias stress, but a more pronounced Delta V-T under positive bias stress with a characteristic turnaround behavior from a positive Delta V-T to a negative Delta V-T. This abnormal positive bias instability is explained using a two-process model, including both electron trapping and hydrogen release and migration. Electron trapping induces the initial positive Delta V-T, which can be fitted using the stretched exponential function. The breakage of residual AlO-H bonds in low-temperature ALD Al2O3 is triggered by the energetic channel electrons. The hydrogen atoms then diffuse toward the In-Ga-Zn-O channel and induce the negative Delta V-T through electron doping with power-law time dependence. A rapid partial recovery of the negative Delta V-T after stress is also observed during relaxation. (C) 2016 AIP Publishing LLC.en_US
dc.language.isoen_USen_US
dc.titleAbnormal positive bias stress instability of In-Ga-Zn-O thin-film transistors with low-temperature Al2O3 gate dielectricen_US
dc.identifier.doi10.1063/1.4939905en_US
dc.identifier.journalAPPLIED PHYSICS LETTERSen_US
dc.citation.volume108en_US
dc.citation.issue3en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000373055500053en_US
Appears in Collections:Articles