Full metadata record
DC FieldValueLanguage
dc.contributor.authorKarwowski, Jaceken_US
dc.contributor.authorWitek, Henryk A.en_US
dc.date.accessioned2017-04-21T06:55:37Z-
dc.date.available2017-04-21T06:55:37Z-
dc.date.issued2016-04-17en_US
dc.identifier.issn0026-8976en_US
dc.identifier.urihttp://dx.doi.org/10.1080/00268976.2015.1115565en_US
dc.identifier.urihttp://hdl.handle.net/11536/133655-
dc.description.abstractGeneral formulae for solutions of the Schrodinger equation with power potentials are derived. The wavefunctions are expressed as products of the asymptotic factors and special forms of the Hessenberg determinants, in general, of infinite order. Conditions under which the order of the determinants becomes finite are determined. It is shown that solutions represented by the finite-order determinants may exist only if the highest power of the radial variable in the potential function is even. [GRAPHICS] .en_US
dc.language.isoen_USen_US
dc.subjectSchrodinger equationen_US
dc.subjectquasi-exactly solvable modelen_US
dc.subjectrecurrence relationen_US
dc.subjectHessenberg determinanten_US
dc.titleSchrodinger equations with power potentialsen_US
dc.identifier.doi10.1080/00268976.2015.1115565en_US
dc.identifier.journalMOLECULAR PHYSICSen_US
dc.citation.volume114en_US
dc.citation.issue7-8en_US
dc.citation.spage932en_US
dc.citation.epage940en_US
dc.contributor.department應用化學系zh_TW
dc.contributor.department應用化學系分子科學碩博班zh_TW
dc.contributor.departmentDepartment of Applied Chemistryen_US
dc.contributor.departmentInstitute of Molecular scienceen_US
dc.identifier.wosnumberWOS:000373947100005en_US
Appears in Collections:Articles