標題: On the Jensen-Shannon divergence and variational distance
作者: Tsai, SC
Tzeng, WG
Wu, HL
資訊工程學系
Department of Computer Science
關鍵字: Jensen-Shannon divergence;expander;extractors;leftover hash lemma;parity lemma
公開日期: 1-九月-2005
摘要: We study the distance measures between two probability distributions via two different distance metrics, a new metric induced from Jensen-Shannon divergence, and the well known L-1 metric. We show that several important results and constructions in computational complexity under the L-1 metric carry over to the new metric, such as Yao's next-bit predictor, the existence of extractors, the leftover hash lemma, and the construction of expander graph based extractor. Finally, we show that the useful parity lemma in studying pseudorandomness does not hold in the new metric.
URI: http://dx.doi.org/10.1109/TIT.2005.853308
http://hdl.handle.net/11536/13374
ISSN: 0018-9448
DOI: 10.1109/TIT.2005.853308
期刊: IEEE TRANSACTIONS ON INFORMATION THEORY
Volume: 51
Issue: 9
起始頁: 3333
結束頁: 3336
顯示於類別:會議論文


文件中的檔案:

  1. 000231392900027.pdf

若為 zip 檔案,請下載檔案解壓縮後,用瀏覽器開啟資料夾中的 index.html 瀏覽全文。