Full metadata record
DC FieldValueLanguage
dc.contributor.authorKao, Chiu-Yenen_US
dc.contributor.authorShih, Chih-Wenen_US
dc.contributor.authorWu, Chang-Hongen_US
dc.date.accessioned2017-04-21T06:56:30Z-
dc.date.available2017-04-21T06:56:30Z-
dc.date.issued2016-08-01en_US
dc.identifier.issn0167-2789en_US
dc.identifier.urihttp://dx.doi.org/10.1016/j.physd.2016.04.014en_US
dc.identifier.urihttp://hdl.handle.net/11536/133874-
dc.description.abstractNeural fields model macroscopic parts of the cortex which involve several populations of neurons. We consider a class of neural field models which are represented by integro-differential equations with transmission time delays which are space-dependent. The considered domains underlying the systems can be bounded or unbounded. A new approach, called sequential contracting, instead of the conventional Lyapunov functional technique, is employed to investigate the global dynamics of such systems. Sufficient conditions for the absolute stability and synchronization of the systems are established. Several numerical examples are presented to demonstrate the theoretical results. (C) 2016 Elsevier B.V. All rights reserved.en_US
dc.language.isoen_USen_US
dc.subjectAbsolute stabilityen_US
dc.subjectSynchronizationen_US
dc.subjectNeural field modelsen_US
dc.subjectDelay equationsen_US
dc.titleAbsolute stability and synchronization in neural field models with transmission delaysen_US
dc.identifier.doi10.1016/j.physd.2016.04.014en_US
dc.identifier.journalPHYSICA D-NONLINEAR PHENOMENAen_US
dc.citation.volume328en_US
dc.citation.spage21en_US
dc.citation.epage33en_US
dc.contributor.department應用數學系zh_TW
dc.contributor.departmentDepartment of Applied Mathematicsen_US
dc.identifier.wosnumberWOS:000378968000003en_US
Appears in Collections:Articles