Full metadata record
DC FieldValueLanguage
dc.contributor.authorJin, Fu-Yuanen_US
dc.contributor.authorChang, Kuan-Changen_US
dc.contributor.authorChang, Ting-Changen_US
dc.contributor.authorTsai, Tsung-Mingen_US
dc.contributor.authorPan, Chih-Hungen_US
dc.contributor.authorLin, Chih-Yangen_US
dc.contributor.authorChen, Po-Hsunen_US
dc.contributor.authorChen, Min-Chenen_US
dc.contributor.authorHuang, Hui-Chunen_US
dc.contributor.authorLo, Ikaien_US
dc.contributor.authorZheng, Jin-Chengen_US
dc.contributor.authorSze, Simon M.en_US
dc.date.accessioned2017-04-21T06:56:06Z-
dc.date.available2017-04-21T06:56:06Z-
dc.date.issued2016-06en_US
dc.identifier.issn1882-0778en_US
dc.identifier.urihttp://dx.doi.org/10.7567/APEX.9.061501en_US
dc.identifier.urihttp://hdl.handle.net/11536/133961-
dc.description.abstractIn this letter, we inserted a low dielectric constant (low-k) or high dielectric constant (high-k) material as a switching layer in indium-tin-oxide-based resistive random-access memory. After measuring the two samples, we found that the low-k material device has very low operating voltages (-80 and 110mV for SET and RESET operations, respectively). Current fitting results were then used with the COMSOL software package to simulate electric field distribution in the layers. After combining the electrical measurement results with simulations, a conduction model was proposed to explain resistance switching behaviors in the two structures. (C) 2016 The Japan Society of Applied Physicsen_US
dc.language.isoen_USen_US
dc.titleReducing operation voltages by introducing a low-k switching layer in indium-tin-oxide-based resistance random access memoryen_US
dc.identifier.doi10.7567/APEX.9.061501en_US
dc.identifier.journalAPPLIED PHYSICS EXPRESSen_US
dc.citation.volume9en_US
dc.citation.issue6en_US
dc.contributor.department電子工程學系及電子研究所zh_TW
dc.contributor.departmentDepartment of Electronics Engineering and Institute of Electronicsen_US
dc.identifier.wosnumberWOS:000377795800010en_US
Appears in Collections:Articles